期刊文献+

番茄多蛋白桥梁因子基因LeMBF1的克隆及抗病性分析 被引量:7

Cloning and Analysis of Pathogen Resistance of Multiprotein Bridging Factor Gene LeMBF1 in Tomato
下载PDF
导出
摘要 采用同源序列克隆法,从番茄中克隆了多蛋白桥梁因子基因LeMBF1,该基因包含一个完整的420 bp的开放阅读框,编码139个氨基酸,具有MBF1保守结构域.LeMBF1氨基酸序列与马铃薯StMBF1、烟草NtMBF1和葡萄VvMBF1的氨基酸序列相似度分别是99.3%、91.4%和84.2%.为了研究番茄多蛋白桥梁因子LeMBF1在植物抗病性中的作用,以LeMBF1超表达转基因番茄和野生型番茄为材料,对其进行接种病原细菌Pst.DC3000和尖孢镰刀菌Fusarium.oxysporum的生物胁迫实验.抗菌表型分析发现,LeMBF1超表达转基因番茄叶片上的菌斑数明显少于对照植株;实时定量PCR分析表明,LeMBF1超表达番茄植株中防卫基因PR1、PR6的表达水平明显增强.由此可见,LeMBF1可能通过激活部分PRs基因的表达提高了植物的抗病性. The full-length eDNA of LeMBF1 was cloned from tomato by Homology-based cloning method, which contained an ORF of 420 bp and encoded a protein of 139 amino acid residues containing a con- served MBF1 transcription activation domain. Compared with Solarium tuberosum StMBF1, Nicotiana tabacum NtMBF1 and Vitis vinifera VvMBF1 , the deduced amino acid sequence of LeMBF1 shares 99.3%, 91.4% and 84.2% similarity, respectively. To analyze the pathogen resistance of multiprotein bridging factor gene LeMBF1 in tomato, the LeMBFl-overexpressing tomatoes and wild type lines were inoculated with Pst. DC3000 and Fusarium. oxysporum respectively. The phenotypic analysis of pathogen resistance displayed that the plaque number on the LeMBFl-overexpressing tomato leaves was significantly less than the control plants, qRT-PCR analysis showed that the expression levels of pathogenesis-related PR 1 and PR6 genes were significantly increased in LeMBFl-overexpessing tomato plants. These results indicated that LeMBF1 elevat- ed the pathogen resistance of tomato plants by activating the expression of some PR genes.
出处 《生命科学研究》 CAS CSCD 北大核心 2012年第2期138-143,148,共7页 Life Science Research
基金 国家自然科学基金资助项目(31000911) 中央高校基本科研业务项目(CDJXS10230035)
关键词 番茄 多蛋白桥梁因子 LeMBF1 抗病性 tomato multiprotein bridging factor LeMBF1 pathogen resistance
  • 相关文献

参考文献22

  • 1TAKEMARU K, LI F Q, UEDA H, et al. Multiprotein bridg- ing factor 1 (MBF1) is an evolutionarily conserved transcrip- tional coactivator that connects a regulatory factor and TATA element-binding protein[J]. Proceedings of the National Acade- my of Sciences of the United States of America, 1997 , 94 (14) : 7251-7256.
  • 2TAKEMARU K, HARASHIMA S, UEDA H, et al. Yeast coactivator MBF1 mediates GCN4-dependent transcriptional activation[J]. Molecular and Cellular Biology, 1998 , 18(9) : 4971-4976.
  • 3BRENDEL C, GELMAN L, AUWERX J. Multiprotein bridg- ing factor-1 (MBF-1) is a eofactor for nuclear receptors that regulate lipid metabolism[J]. Molecular Endocrinology, 2002, 16(6) : 1367-1377.
  • 4LIU Q x, JINDRA M, UEDA H, et ol. Drosophila MBF1 is a co-activator for Tracheae defective and contributes to the for- mation of tracheal and nervous systems[J]. Development, 2003, 130(4) : 719-728.
  • 5KABE Y, GOTO M, SHIMA D, et ol. The role of human MBF1 as a transcriptional coactivator[J]. Journal of Biological Chemistry, 1999, 274(48) : 34196-34202.
  • 6KIM M J, LIM G H, KIM E S, et ol. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the multiprotein bridg- ing factor la (MBFla) transcriptional coactivator gene[J]. Bio- chemical and Biophysical Research Communications, 2007 , 354(2) : 440-446.
  • 7SUZ'U~Ki N, RIZHSKY L, LIANG H, et ol. Enhanced toler- ance to environmental stress in transgenic plants expressing the transcriptional coactivator muhiprotein bridging factor lc [J]. Plant Physiology, 2005 , 139(3) : 1313-1322.
  • 8ARCED P, TONON C, ZANETI'I M E, et ol. The potato transcriptional co-activator StMBF1 is up-regulated in re- sponse to oxidative stress and interacts with the TATA-box binding protein[J]. Journal of Biochemistry and Molecular Bio- log'y, 2006,39(4) : 355-360.
  • 9GODOY A V, ZANETTI M E, SAN Segundo B, et al. Identi- fication of a putative Solarium tuberosum transcriptional coac- tivator up-regulated in potato tubers by Fusarium solani f sp. eumartii infection and wounding [J]. Physiologia Plantarum, 2001, 112(2) : 217-222.
  • 10ZANETTI M E, BLANCO F A, DALEO G R, et al. Phospho- rylation of a member of the MBF1 transcriptional co-activator family, StMBF1, is stimulated in potato cell suspensions upon fu- ngal elicitor challenge[J]. Journal of Experimental Botany, 2003, 54(383) : 623-632.

二级参考文献3

共引文献9

同被引文献84

  • 1左豫虎,康振生,杨传平,芮海英,娄树宝,刘惕若.β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系[J].植物病理学报,2009,39(6):600-607. 被引量:52
  • 2孙斌,李多川,慈晓燕,郭润芳,王颖.小麦叶片β-1,3-葡聚糖酶的诱导、纯化与抗菌活性[J].植物生理与分子生物学学报,2004,30(4):399-404. 被引量:20
  • 3傅天珍,高永生,陈集双.系统侵染的番茄植株中黄瓜花叶病毒的时序变化[J].植物病理学报,2006,36(4):359-365. 被引量:5
  • 4吴艳兵,谢荔岩,谢联辉,林奇英.毛头鬼伞多糖对烟草酶活性和同工酶谱的影响[J].微生物学杂志,2007,27(5):29-33. 被引量:15
  • 5PICO B, DIEZ M J, NUEZ F. Viral diseases causing the greatest economic losses to the tomato crop II. The tomato yellow leaf curl virus: a review [ J]. Scientia Horticulturae, 1996, 67(3-4): 151-196.
  • 6STROBEL G A, DASISY B, CASTILLO U, et al. Nat-ural products from endophytic microorganisms [ J ]. Jour- nal of Natural Products, 2004, 67 (2) :257 -268.
  • 7RYU C M, MUROHY J F, MYSORE K S, et al. Plant growth-promoting rhizobacteria systemically protect Ara- bidopsis thaliana against cucumber mosaic virus by a salicylic acid and NPRl-independent and jasmonic acid- dependent signaling pathway [ J ]. The Plant Journal, 2004, 39(3) :381 -382.
  • 8WANG S, WU H J, ZHAN J, et al. The role of syner- gistic action and molecular mechanism in the effect of ge- netically engineered strain Bacillus subtilis OKBHF in en- hancing tomato growth and cucumber mosaic virus resist- ance[ J]. Biological Control, 2011,56( 1 ) : 113 - 121.
  • 9KAN J L, JOOSTEN M H, WAGEMAKERS C A,et al. Differential accumulation of mRNAs encoding extracellu- lar and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum [ J ]. Plant Molecular Biology, 1992, 20(3) :513 - 527.
  • 10DANHASH N, WAGEMAKERS C A, KAN J A, et al. Molecular characterization of four chitinase cDNAs ob- tained from Cladosporium fulvum-infected tomato [ J ]. Plant Molecular Biology, 1993, 22(6) :1017 -1029.

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部