期刊文献+

非自治非线性时滞差分方程的全局渐近稳定性 被引量:1

The Global Asymptotic Stability of Zero Solution of Nonlinear Nonautonomous Delay Difference Equtions
下载PDF
导出
摘要 主要讨论了非自治非线性时滞差分方程的线形部分为 2周期系数与非周期系数的两种情形 。 In this paper,we study the problem of the global asymptotic stability of zero xolution of nonlinear nonautonomous delay difference equations. We give some sufficient conditions for the global asymptotic stabiliy of zero solution of nonlinear nonautonomous delay difference equations.These sufficient conditions are quite different when the linear parts of the equations are periodic and when they are nonperiodic.We discuss these two cases separately.
作者 李雪臣
出处 《洛阳工学院学报》 2000年第1期83-86,共4页 Journal of Luoyang Institute of Technology
基金 河南省教委科研基金赞助项目!(98110018)
关键词 全局稳定性 时滞差分方程 非自治 非线性 零解 Global stability Difference equations Nonlinear
  • 相关文献

参考文献18

二级参考文献107

共引文献142

同被引文献9

  • 1刘开宇,庾建设,罗交晚.非自治线性时滞微分方程的扰动全局吸引性及一致稳定性[J].高校应用数学学报(A辑),1998,13(3):257-266. 被引量:4
  • 2Gyori I, Ladas G, Vlahos P N. Global attractivity in a delay difference equation[J]. Nonl. Anal. TMA, 1991,17(5) :473 ~ 479.
  • 3B Shi, Z C Wang and J S Yu. Global asymptotic stability in a nonlinear nonautonomous difference equation with delays [ J]. Computers Math.App.1997,33(8):93~102.
  • 4Gyori I. Interaction between oscillations and global asymptotic stability in delay differential equations[J]. Dfferential and Integral Equations. 3(1990): 181 ~ 200.
  • 5Gyori I,Ladas G.Oscillation theory of delay differential equations with applications [ M ]. Oxford: Clarendon Press, 1991.
  • 6Ladas G. Explicit conditions for the oscillation of difference equations [J]. J. Math. Anal. App, 1990,157:276 ~ 287.
  • 7Erbe L, Zhang B G, Li J Z. On the oscillation of positive solutions of neutral difference equations[J]. J. Math. Anal. App. 1991,158 ~ 233.
  • 8Erbe L,Zhang B G.Oscillation of discrete analogues of delay equations [J]. Diff. Int Equa. 1989,2:300 ~ 309.
  • 9时宝,王志成,庾建设.时滞差分方程零解全局渐近稳定的充分必要条件及其应用[J].数学学报(中文版),1997,40(4):615-624. 被引量:20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部