期刊文献+

一种新的三环网络TL(N;1,s,s+1)直径求解方法 被引量:3

A new method to calculate the diameter of triple-loop networks TL(N;1,s,s+1)
原文传递
导出
摘要 基于多环网络的直径是衡量网络效率的重要指标,提出了一种新的有向三环网络TL(N;1,s,s+1)的直径求解方法——等价三叉树方法,并得到了一种新的直观图——三叉树.采用C#语言和SQL Server2000仿真实现了三叉树的结构模型.研究了该三叉树的性质,给出了三叉树的构造算法.找到了该族三环网络直径d(N;1,s,s+1)最大值、最小值的分布规律.仿真结果表明:直径的最大值随N值的增加呈有规律的锯齿状波动增加,直径的最小值随N值的增加呈有规律的阶梯状增加,并给出了直径d(N;1,s,s+1)的上界与下界的显式公式. The diameter of multi-loop networks is an important indicator to measure network ef- ficiency, a new method, equivalent ternarytree method, to calculate the diameter of directed triple-loop networks TL (N ; 1, s, s + 1) is presented. A new diagram, ternarytree, is obtained by this method. The structural model of ternarytree is stimulated which makes use of C-Sharp and SQL Server2000. The attributes of ternarytree are studied and the algorithm of construc- ting ternarytree is presented. The distribution rule of the maximum diameter values and the minimum diameter values of this triple-loop networks family are found. The simulating results show that the maximum diameter value is regular zigzag rising with the rising N value, the minimum diameter value is regular stair-stepping rising with the rising N value. The simple formula to express the diameter of upper bound and lower bound, d (N ; 1, s, s+1), is presen- ted.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2012年第3期510-514,共5页 Journal of China University of Mining & Technology
基金 国家自然科学青年基金项目(61003311) 安徽省高校自然科学研究重点基金项目(KJ2010A343) 安徽工业大学青年教师科研基金项目(QZ200916)
关键词 三环网络 三叉树 直径 triple-loop networks ternarytree diameter family
  • 相关文献

参考文献10

  • 1AGUILO F, FIOL M A, GARCiA C. Triple-loop networks with small transmission delay[J]. Discrete Mathematics, 1997(167/168) : 3-16.
  • 2AGUILO F. New dense families of triple loop net works[J]. Discrete Mathematics, 1999 (197/198) 15-27.
  • 3HWANG F K. A survey on multi-loop networks[J]. Theoretical Computer Science, 2003,299 (1/3) : 107- 121.
  • 4HWANG F K, LIN B C. K-diameters of the hyper-L shape tile[J]. Intereonnection Network, 2002,3 (3/ 4) :.
  • 5CHEN C, HWANG F K, LEE J S, et al. The exist- ence of hyper-L triple-loop networks[J]. Discrete Mathematics, 2003 (268) : 287-291.
  • 6CHEN C, HUNG C S, TANG W S. On the exist- ence of hyper-L triple-loop networks [J]. Discrete Mathematics, 2006(306) : 1132-1138.
  • 7侯新民,王天明.分布式三环网络传输延迟[J].大连理工大学学报,2002,42(1):9-12. 被引量:10
  • 8方木云,赵保华,屈玉贵.双环网络G(N;1,s)的L形瓦仿真算法[J].系统仿真学报,2005,17(4):914-916. 被引量:20
  • 9SABARIEGO P, SANTOS F. Triple-loop networks with arbitrarily many minimum distance diagrams [J]. Discrete Mathematics, 2009(309) : 1672-1684.
  • 10邰伟鹏,方木云,徐宏,张学锋.三环网络TL(N;1,s,s+1)超L型瓦仿真算法[J].华中科技大学学报(自然科学版),2010,38(3):50-52. 被引量:7

二级参考文献21

  • 1李乔,徐俊明,张忠良.最优双环网络的无限族[J].中国科学(A辑),1993,23(9):979-992. 被引量:71
  • 2方木云,赵保华,屈玉贵.双环网络G(N;1,s)的L形瓦仿真算法[J].系统仿真学报,2005,17(4):914-916. 被引量:20
  • 3孙淑玲 许胤龙.组织数学引论[M].合肥:中国科学技术大学出版社,1996..
  • 4Aguilo F, Fiol M A, Garcia C. Triple-loop networks with small transmission delay[J]. Discrete Math, 1997, 167 168(4): 3-16.
  • 5Aguilo F. New dense families of triple loop networks [J]. Discrete Math, 1999, 197-198 (2): 15-27.
  • 6Chen C, Hwang F K, Lee J S, et al. The existence of hyper L triple-loop networks[J]. Discrete Math, 2003, 268(7): 287-291.
  • 7邰伟鹏.双环网络G(N;1,s)直径的改进求解算法与实现[J].微电子学与计算机,2007,24(8):46-48. 被引量:3
  • 8邰伟鹏,方木云.双环网络G(N;1,s)L形瓦的改进仿真算法[J].计算机工程与设计,2007,28(16):4007-4008. 被引量:3
  • 9C Y Chen, F K Hwang. Equivalent nondegenerate L-shapes of double-loop networks [J]. Networks, 2000, 36: 118-125.
  • 10C Y Chen, F K Hwang. Equivalent L-shapes of double-loop networks for the degenerate case [J]. Journal of Interconnection Networks, 2000, 1: 47-60.

共引文献26

同被引文献30

  • 1丁维龙,吴水生,陈琦,程志君.基于树形结构相似度的植物种类识别系统[J].中南大学学报(自然科学版),2013,44(S2):244-249. 被引量:2
  • 2黄培之,陈凯辉,刘泽慧.基于共轭地表曲面的山脊线和山谷线提取方法的研究[J].测绘科学,2004,29(5):25-27. 被引量:12
  • 3吴艳兰,胡鹏,刘永琼.基于地图代数的数字地表流线模拟研究[J].水科学进展,2007,18(3):356-361. 被引量:4
  • 4Aguil6 F,Fiol M A,Garcfa C.Triple-loop networks with small transmission delay[J].Discrete Mathematics,1997,167-168:3-16.
  • 5Aguil6 F.New dense families of triple loop networks[J].Discrete Mathematics,1999,197-198:15-27.
  • 6Hwang F K,Du D Z.A survey on multi-loop networks[J].Theoretical Computer Science,2003,299(1-3):107-121.
  • 7Hwang F K,Lin B C.K-diameters of the hyper-L shape tile[J].Interconnection Network,2002,3(3-4):245-252.
  • 8Chen C,Hwang F K,Lee J S,et al.The existence of hyper-L triple-loop networks[J].Discrete Mathematics,2003,268(1-3):287-291.
  • 9Chen C,Hung C S,Tang W S.On the existence of hyper-L triple-loop networks[J].Discrete Mathematics,2006,306(12):1132-1138.
  • 10Sabariego P,Santos F.Triple-loop networks with arbitrarily many minimum distance diagrams[J].Discrete Mathematics,2009,309:1672-1684.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部