摘要
The effects of spinning deformation and subsequent heat treatments on the mechanical properties and microstructure of 18Ni Co-free Maraging steel (T250) tube were evaluated comparatively with the perform. An obvious radial shrinkage is detected in spun tubes after heat treatment and the magnitude of the shrinkage induced by solution treatment is almost the same as that by aging. Plastic deformation during spinning elongated the grains severely in the direction of metal flow. The solution treatment resulted in a drastically refined grain and recrystallised microstructure, removing the effect of plastic deformation, relieving the tangential residual stress and strain and improving hardness. Subsequent aging obtained a tempered microstructure, enhancing hardness values strikingly for precipitation strengthening. XRD (X-ray diffraction) analysis indicated that the reversed austenite formed in a plate-like along the grain boundaries and the volume fraction of austenite in spun tube was more than double that in the preform. These results imply that the residual stress and stain induced by spinning process and reversed austenite forming during aging might have the similar contribution to the radical shrinkage.
The effects of spinning deformation and subsequent heat treatments on the mechanical properties and microstructure of 18Ni Co-free Maraging steel (T250) tube were evaluated comparatively with the perform. An obvious radial shrinkage is detected in spun tubes after heat treatment and the magnitude of the shrinkage induced by solution treatment is almost the same as that by aging. Plastic deformation during spinning elongated the grains severely in the direction of metal flow. The solution treatment resulted in a drastically refined grain and recrystallised microstructure, removing the effect of plastic deformation, relieving the tangential residual stress and strain and improving hardness. Subsequent aging obtained a tempered microstructure, enhancing hardness values strikingly for precipitation strengthening. XRD (X-ray diffraction) analysis indicated that the reversed austenite formed in a plate-like along the grain boundaries and the volume fraction of austenite in spun tube was more than double that in the preform. These results imply that the residual stress and stain induced by spinning process and reversed austenite forming during aging might have the similar contribution to the radical shrinkage.
基金
Item Sponsored by National Natural Science Foundation of China(50871076)