期刊文献+

一阶回归模型下Q和Q_B准则的几个结果

SOME RESULTS ON Q AND Q_B CRITERIA UNDER THE FIRST ORDER REGRESSION MODEL
原文传递
导出
摘要 在试验设计中,一阶回归模型通常被作为合格拟合模型用来从众多因子中筛选出效应显著的特殊因子,而Q和Q_B准则能够比较简单地从大量的合格拟合模型中找出具有最优性质的设计.主要探讨了当拟合模型为一阶回归模型时,二水平的初始设计d与其Double设计(d d d -d)在Q和Q_B准则下的最优关系.给出了初始设计d的Q和Q_B值与其Double设计的Q和Q_B值之间的解析关系,从而得到在Q或Q_B准则下如果初始设计d是最优的,那么其Double设计也是最优的.此外,也分别给出了初始设计d及其Double设计的Q值和Q_B值的一个下界. In experimental design,the first order regression model has been usually used to screen a few important main effects from a large number of potential factors.The so-called Q and Q_b criteria can find optimal designs from many eligible model uncertainty.This paper aims to explore the optimal relationship of Q and Qb criteria between the original design d with two levels and its double design D_d under the first order regression model,where D_d =(d d d -d). A new analytical relation between Q-values or Q_B-values of d and D_d is obtained,which shows that under Q criterion or Q_b criterion,if d is optimal,then D_d is also optimal.Moreever,some lower bounds on Q-values and Q_B-values of d and D_d are also derived,respectively.
作者 张裕 覃红
出处 《系统科学与数学》 CSCD 北大核心 2012年第3期334-343,共10页 Journal of Systems Science and Mathematical Sciences
基金 高等学校博士学科点专项科研基金课题(20090144110002) 中央高校基本科研业务费专项资金项目资助
关键词 Double设计 Q准则 QB准则 受控理论 Double design Q criterion Q_B criterion majorization theory
  • 相关文献

参考文献13

  • 1Booth K H V and Cox D R. Some systematic supersatured designs. Technometrics, 1962, 22: 601-608.
  • 2Box G E P and Hunter J S. The 2k-p fractional factorial designs. Technometrics, 1961, 3: 311-351.
  • 3Tang B and Deng L Y. Minimum G2-aberration for nonregular fractional designs. Ann. Statist., 1999, 27: 1914-1926.
  • 4Xu H and Wu C F J. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann. Statist., 2001, 29: 549-560.
  • 5Tsai P W, Gilmour S G and Mead R. Projective three-level main effects designs robust to model uncertainty. Biometrika, 2000, 87: 467-475.
  • 6Tsai P W, Gilmour S G and Mead R. Three-level main-effects designs exploiting prior information about model uncertaity. J. Statist. Planning and Inference, 2007, 137: 619-627.
  • 7Plackett R L and Burman J P. The design of optimum multifactorial experiments. Biometrika, 1946, 33: 305-325.
  • 8Chen H G and Cheng C S. Doubling and projection a method of constrcting two-level designs of resolution IV. Ann. Statist., 2006, 34: 546-558.
  • 9Xu H Q and Cheng C S. A complementary design theory for doubling. Ann. Statist., 2008, 36: 445-457.
  • 10刘晓华,覃红.Q准则下的最优double设计[J].应用数学学报,2008,31(6):987-992. 被引量:2

二级参考文献11

  • 1Booth K H V, Cox D R. Some Systematic Supersaturated Designs. Technometrics, 1962, 4:489-495
  • 2Yamada S, Lin D K J. Three-level Supersaturated Designs. Statist. Probab. Lett., 1999, 45:31-39
  • 3Box G E P, Hunter J S. The 2^k-p Fractional Factorial Designs (Ⅰ and Ⅱ). Technometrics, 1961, 3: 311-351, 449-458
  • 4Fries A, Hunter W G. Minimum Aberration 2^k-p Designs. Technometrics, 1980, 22:601-608
  • 5Tang B, Deng L Y. Minimum G2-aberration for Nonregular Fractional Designs. Ann. Statist., 1999, 27:1914-1926
  • 6Xu H, Wu C F J. Generalized Minimum Aberration for Asymmetrical Fractional Factorial Designs. Ann. Statist., 2001, 29:549-560
  • 7Tsai P W, Gilmour S G, Mead R. Projective Three-level Main Effects Designs Robust to Model Uncertainty. Biometrika, 2000, 87:467-475
  • 8Tsai P W, Gilmour S G, Mead R. Some New Three-level Orthogonal Main Effects Designs Robust to Model Uncertainty. Statist. Sinica, 2004, 14:1075-1984
  • 9Tsai P W, Gilmour S G, Mead R. Three-level Designs Exploiting Prior Information about Model Uncertainty. Journal of Statistical Planning and Inference, 2007, 137(2): 619-627
  • 10Chen H G, Cheng C S. Doubling and Projection: a Method of Constructing Two-level Designs of Resolution Ⅳ. Ann. Statist., 2006, 34:546-558

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部