期刊文献+

业务质量约束下最大化收益的HFC频点带宽分配方法 被引量:2

HFC Frequency Bandwidth Allocation Method Based on Constraints of QoS and Maximum Revenue
下载PDF
导出
摘要 HFC频点带宽的分配是广播电视网络业务提供系统的一项关键技术,直接决定了系统的整体收益.描述了HFC频点带宽资源分配面临的问题,提出基于业务收益函数的频点带宽分配方法.在分析广电网络视频点播、时移电视和高速下载三种典型业务特性的基础上,给出了它们的收益函数,提出了一种基于边际效益的贪婪算法以完成资源的分配.该算法在保证业务质量满足最低要求的基础上,按照各类业务的实际需求分配可用的频点带宽,使系统的收益最大.仿真试验验证了该算法的有效性. The allocation of HFC frequency bandwidth is a key technology in the service delivery systems of broadcast television network.It directly determines the overall system revenue.This paper describes current problems of the distribution of HFC frequency bandwidth and proposes allocation of frequency bandwidth according to the service revenue functions.The paper first analyzes the behaviors of three typical services of broadcast television network: video on demand,time shift TV and high-speed download.Then,it gives their revenue functions.On this basis,the paper proposes a greedy algorithm based on the service marginal revenues.In ensuring the service QoS meets the minimum requirements,the algorithm allocates the HFC frequency bandwidth based on the needs of various services to enable operators to maximize revenue.In the end,simulation results show the effectiveness of the algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第6期1223-1227,共5页 Journal of Chinese Computer Systems
基金 国家科技支撑计划项目(2008BAH28B04)资助 国家“八六三”高技术研究发展计划项目(2009AA01A339)资助
关键词 业务质量 收益最大化 HFC频点带宽 资源分配 QoS maximum revenue HFC frequency bandwidth resource allocation
  • 相关文献

参考文献4

二级参考文献37

  • 1牛志升,王兰,段翔.多媒体DS-CDMA系统中基于效用函数的无线资源优化策略[J].电子学报,2004,32(10):1594-1599. 被引量:16
  • 2IEEE LAN/MAN standard committee. IEEE standard for local and metropolitan area networks part 16: air interface for fixed broadband wireless access systems. New York: The Institute of Electrical and Electronics Engineers, 2(104
  • 3IEEE LAN/MAN standard committee. IEEE standard for local and metropolitan area networks part 16: air interface for fixed and mobile broadband wireless access systems amendment 2. New York: The Institute of Electrical and Electronics Engineers, 2006
  • 4Wong C Y, Cheng R S, Letaief K B, et al. Multiuser OFDM with adaptive subcarrier, bit, and power allocation.IEEE Journal on Selected Areas in Communication, 1999, 17(10) : 1747-1758
  • 5Jang J, Lee K B. Transmit Power Adaptation for Multiuser OFDM Systems. IEEE Journal on Selected Areas in Communication, 2003, 21(2):171-178
  • 6Zhang Y J, Letaief K B. Multiuser adaptive subcarrier-and- bit allocation with adaptive cell selection for OFDM systems. IEEE Transactions on Wireless Communication, 2004, 3(5) : 1566-1575
  • 7Rhee W, Cioffi J M. Increase in capacity of multiuser OFDM system using dynamic subchannel allocation. In: Proceedings of the 2000 IEEE Vehicular Technology Conference, Tokyo, Japan, 2000. 1085-1089
  • 8Shen Z K, Andrews J G, Evans B L. Adaptive resource allocation in multiuser OFDM systems with proportional fairness. IEEE Transactions on Wireless Communication , 2005, 4(6) : 2726-2737
  • 9Kellyf P, Maullooa, Tan D. Rate control for communication networks: shadow prices, proportional fairness and stabihty. Journal of the operational research society, 1998, 49(3) :237- 252
  • 10Song G C, Li Y. Cross-layer optimization for OFDM wireless networks-part Ⅰ: theoretical framework. IEEE Transactions On Wireless Communication, 2005, 4(2): 614-624

共引文献20

同被引文献16

  • 1TOMKOS I, KAZOVSKY L, KITAYAMA K I. Next-generation opti- cal access networks: dynamic bandwidth allocation, resource use op- timization, and QoS improvements[J]. Network, IEEE, 2012, 26(2):4-6.
  • 2ZHENG J, MOUFTAH H T. A survey of dynamic bandwidth alloca- tion algorithms for ethemet passive optical networks[J]. Optical Switching and Networking, 2009, 6(3): 151-162.
  • 3SONG H, KIM B W, MUKERJEE B. Long-reach optical access net- works: a survey of research challenges, demonstrations, and band- width assignment mechanisms[J]. IEEE Communications Surveys & Tutorials 2010,120):112-123.
  • 4KRAMER G, MUKHERJEE B, ESAVENTO G. Interleaved polling with adaptive cycle timc(IPACT): a dynamic bandwidth distribution scheme in an optical access network[J]. Photon Network Communica- tion, 2002, 4(1):89-107.
  • 5ZHU Y Q, MA M D. IPACT with grant estimation (IPACT-GE) sc- heme for ethemet passive optical networks[J]. Journal of Lightwave Technology, 2008, 26(14):2055-2063.
  • 6YEOUL S, LEE S H, LEE T J, et al. Double-phase polling algorithm based on partitioned onu subgroups for high utilization in EPONs[J]. Journal Optical Communication Network, 2009, 1 (5): 484-497.
  • 7LIM W S, YUN C H, YANG Y M, et al. Burst-polling-based dynamic bandwidth allocation using adaptive minimum guaranteed bandwidth for EPONs[J]. Journal Optical Communication Network, 2009, 1(7): 594-599.
  • 8CAL1NESCU 1L GRUNSKE L, KWIATKOWSKA M, et al. Dynamic QoS management and optimization in service-based systems[J]. IEEE Transactions on Soitware Engineering, 2011, 37(3):387-409.
  • 9ZHAO H, NIU W, QIN Y, et al. Traffic load-based dynamic bandwidth allocation for balancing the packet loss in DifPServ network[A]. Computer and Information Science (ICIS), 2012 IEEE/ACIS I Ith In- ternational Conference on[C]. IEEE, 2012.99-104.
  • 10ESMAILPOUR A, NASSER N. Dynamic QoS-based bandwidth allocation framework for broadband wireless networks[J]. IEEE Transactions on Vehicular Technology, 2011, 60(6):2690-2700.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部