期刊文献+

汉语音节混淆网络的生成与重打分算法研究

Research on Algorithm of Mandarin Chinese Syllable Confusion Network Generation and Rescoring
下载PDF
导出
摘要 针对目前混淆网络生成算法速度与精度不能兼顾的不足,提出一种新的汉语音节混淆网络生成的方法.本算法采用类似轴对齐算法,对音节网格每次提取一条局部路径与参考路径对齐,根据每次对齐路径与参考路径长度不同,采用不同的策略生成混淆网络,并在生成混淆网络之后对其应用一种新的解码框架进行重打分.实验表明,该算法生成的混淆网络精度较高,时间复杂度优于轴对齐算法,且重打分后的识别率有显著提高. As the current generation algorithm of confusion network cannot take speed and accuracy into account at the same time,this article proposes a new method to generate syllable confusion network of Mandarin Chinese.Similar to Pivot Alignment Algorithm,this method choose a local path from syllable lattice every time,and then according to the different length of the path and reference path,adopt different strategy align this path to the reference path generating confusion network.After generate confusion network,a new decoding frame is used to rescore them.The experimental results show that our algorithm can obtain better precision and complexity than Pivot Alignment Algorithm.Meantime,syllable accurate is improved obviously after rescoring.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第6期1385-1388,共4页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划重点基金项目(2006AA01z146)资助 国家自然科学基金项目(60872142)资助
关键词 混淆网络 音节网格 语音识别 最小词错误解码 重打分 confusion network syllable lattice speech recognition minimum WER decoding Re-scoring
  • 相关文献

参考文献1

二级参考文献10

  • 1Mangu L, Brill E, and Stolcke A. Finding consensus in speech recognition: Word error minimization and other applications of confusion networks. Computer Speech and Language, 2000, 14(4): 373-400.
  • 2Tur G, Wright J, and Gorin A, et al.. Improving spoken language understanding using word confusion networks. Proceedings of ICSLP, Denver, Colorado, 2002: 1137-1140.
  • 3Bertoldi N and Federico M. A new decoder for spoken language translation based on confusion networks. IEEE ASRU Workshop, Cancun, Mexico, 2005: 134-140.
  • 4Xue J and Zhao Y X. Random forests-based confidence annotation using novel feature from confusion network. Proceedings of ICASSP, Toulouse, France, 2006: 1149-1152.
  • 5Hillard D and Ostendorf M. Compensation forward posterior estimation bias in confusion networks. Proceedings of ICASSP, Toulouse, France, 2006: 1153-1156.
  • 6Hakkani-Tur D and Riccardi G. A general algorithm for word graph matrix decomposition. Proceedings of ICASSP, Hong Kong, China, 2003: 596-599.
  • 7Xue J and Zhao Y X. Improving confusion network algorithm and shortest path search from word lattice. Proceedings of ICASSP, Philadelphia, PA, 2005: 853-856.
  • 8Kullback S and Leibler R A. On information and sufficiency. Ann. Math. Stat., 1951, 22(1): 79-86.
  • 9Liu P, Soong F K, and Zhou J L. Effective estimation of Kullback-Leibler divergence between speech models. Tech. Rep., Microsoft Research Asia, 2005.
  • 10Chang E, Shi Y, and Zhou J L, et al.. Speech lab in a box: a Mandarin speech toolbox to Jumpstart speech related research. Proceedings of Eurospeech, Aalborg, Denmark, 2001: 2799-2802.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部