期刊文献+

一类新型改进的广义蚁群优化算法 被引量:2

A New Improved Generalized Ant Colony Optimization Algorithm
下载PDF
导出
摘要 提出了一类新型蚁群优化算法。该算法改进了概率选择函数,将概率选择函数由严格单调增函数推广为有界函数,给出了蚂蚁在某一源节点选择下一个节点的更一般的表达式。证明了算法收敛的重要定理:即对足够大的迭代次数,改进的广义蚁群优化算法至少找到最优解一次的概率趋近于1。提出了信息素渐近平衡原理。在信息素更新规则中,引入了信息素残留率函数、信息素增量函数。证明了渐近信息素在最优路径上将会趋于一个正数,而在非最优路径上将会趋于0。最后,计算机仿真实验结果表明,无论是获得的最优解的质量还是算法的收敛速度,文中提出的改进的广义蚁群优化算法都优于传统的蚁群优化算法。 A new improved generalized ant colony optimization algorithm ( IGACO ) is proposed in this paper. The selected probability functions are generalized from strictly increasing continuous functions to bounded functions, which gives a more general form of expression for the probability of selecting the next node. An important theorem is proved for describing the convergence of IGACO algorithm, i.e. for a sufficiently large number of algorithm iterations, the probability of finding the globally optimal solution at least once tends to 1. A principle of pheromone asymptotic balance is proposed. In the pheromone update rule,the residual rate function of pheromone and the global increasing function of pheromone are presented. Prove that the residual pheromone tends to a positive number on the edges that are globally optimal solution, and tends to 0 on the edges that are not globally optimal solution. Finally, the computational simulation shows that,compared with traditional ant colony optimization algorithm,the IGACO algorithm has good performance both on globally optimal solution and convergent speed.
作者 张代远
出处 《计算机技术与发展》 2012年第6期39-44,共6页 Computer Technology and Development
基金 江苏高校优势学科建设工程资助项目(yx002001)
关键词 人工智能 蚁群优化算法 收敛性 信息素更新规则 artificial intelligence ant colony optimization algorithm convergence pheromone update rule
  • 相关文献

参考文献12

  • 1Dorigo M, Bonabeau E,Theraulaz G. Ant algorithms and stig- mergy[J].Future Gener. Comput. Syst. ,2000,6(8):851- 871.
  • 2Dorigo M, Di Caro G D. The ant colony optimization meta-heuristic [ C ]//New Ideas in Optimization. London : McGraw- Hill, 1999 : 11-32.
  • 3Dofigo M, Di Caro G,Gambardella L M. Ant algorithms for discrete optimization [ J ]. Artif. Life, 1999,5 (2) : 137-172.
  • 4Meuleau N, Dorigo M. Ant colony optimization and stochastic gradient descent [ J ]. Artif. Life,2002,8 (2) : 103-121.
  • 5Badr A, Fahmy A. A proof of convergence for ant algorithms [ J ]. International Journal of Intelligent Computing and Infor- mation ,2003,3 ( 1 ) :22-33.
  • 6Gutjahr W J. A graph-based ant system and its convergence [J]. Future Gener. Comput. Syst. ,2000,16(8) :873-888.
  • 7Sttitzle T, Dofigo M. A Short Convergence Proof for a Class of Ant Colony Optimization Algorithms[ J]. IEEE Trans. on Ev- olutionary Computation ,2002,6(4 ) :358-365.
  • 8DORIGOM,STUTZLET.蚁群优化[M].张军,胡晓敏,罗旭耀,译.北京:清华大学出版社,2007:216-246.
  • 9Zhang D. Convergence Analysis for Generalized Ant Colony Optimization Algorithm [ C ]//Proceedings of the 11 th Joint Conference on Information Sciences. [ s. 1. ] : Atlantis Press, 2008.
  • 10Zhang D, Liu Y. Generalized Ant Colony Optimization Algo- rithm and Its Applications on P2P Searching [ C ]//2011 In- ternational Conference on Information Science and Engineer- ing ( ICISE ). Yangzhou : IEEE Press, 2011 : 1013-1016.

共引文献32

同被引文献20

  • 1李威武,王慧,邹志君,钱积新.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63. 被引量:92
  • 2朱骏,潘理,李建华.基于蚁群算法的P2P网络资源发现算法[J].信息安全与通信保密,2007,29(2):166-168. 被引量:4
  • 3Passino K M. Biomimicry of bacterial foraging for distributed optimization and control[ J ]. IEEE control systems magazine, 2002,22(3) :52-67.
  • 4Muller S, Marehetto J, Airaghi S, et al. Optimization based on bacterial ehemotaxis[ J ]. IEEE trans on evolutionary eomputa- t.ion ,2002,6( 1 ) :16-29.
  • 5Chen Hanning, Zhu Yunlong, Hu Kunyuan. Cooperative bacte- rial foraging algorithm for global optimization [ C ]//2009 中国控制与决策会议论文集.[s.1.]:[s.n.],2009:3896-3897.
  • 6Kim H D, Cho H J. Adaptive tuning of PID controller for multi- variable system using bacterial foraging based optimization [C]//Proceedings of 3rd international Atlantic Web intelli- gence conference on advances. New York: IEEE, 2005:231- 235.
  • 7Chen H C. Bacterial foraging based optimization design of fuzzy PID controllers[ C //Proceedings of 4th international confer- ence on intelligent computing. New York : IEEE, 2008 : 841 - 849.
  • 8Golipudi S V R S, Pattnaik S S, Bajpai 0 P, et al. Bacterial for- aging optimization technique to calculate resonant frequency of rectangular microstrip antenna[ ] ]. International journal of RF and microwave computer-aided engineering, 2008,18 (4) : 383 -388.
  • 9Ken Y,Hui K,John C,et al. Small world overlay P2P net- works[J]. IEEE Quality of Service,2004(7):201-210.
  • 10Bontoux B, Feillet D. Ant Colony Optimization for the traveling purchaser problem[J]. Computer & Operations Research, 2008,35 : 628-637.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部