期刊文献+

基于目标质心的Meanshift跟踪算法 被引量:14

A Meanshift Tracking Algorithm Based on Centroid
下载PDF
导出
摘要 运动目标跟踪涉及到计算机图像处理、视频图像处理、模式识别以及人工智能等诸多领域,是一门交叉性很强的学科。因此,研究一种实时性、鲁棒性好的运动目标跟踪方法依然是该领域面临的一个巨大挑战。快速运动目标跟踪技术是当今目标跟踪领域的难点之一。均值漂移算法在目标跟踪过程中没有利用目标的运动方向和速度信息,这就导致了无法准确跟踪快速目标。文中提出了一种基于质心算法的Meanshift跟踪模型算法。初始位置采用运动目标质心,并在质心位置处采用Meanshift迭代,以巴氏系数判断当前目标和参考目标的匹配程度。实验分析,该算法可实现快速、有效跟踪目标。 Moving target tracking is a highly cross-disciplinary, which involves many fields, such as computer image processing, video image processing, pattern recognition,artificial intelligence and so on. Therefore, the research of real-time and robustness is still a great challenge in thc field of object tracking. Fast motion target tracking is one of the most difficulties in the field. Meanshift algorithm doesn' t use the target' s motion direction and speed information in process of target tracking. So it brings about failures in fast motion target tracking. An algorithm combined center of gravity with Meanshift algorithm is proposed in this paper. At first, use the centroid as initial position;And then Meanshift iteration is done in the location of the centroid;And the Bhattacharyya' s coefficient is applied to judge the matching degree between the current target and reference target. Experimental results show that the new algorithm can help achieve fast and effective object tracking.
出处 《计算机技术与发展》 2012年第6期104-106,110,共4页 Computer Technology and Development
基金 江苏高校优势学科建设工程资助项目(yx002001)
关键词 目标跟踪 质心 MEANSHIFT object tracking centroid Meanshift
  • 相关文献

参考文献11

  • 1雷云,王夏黎,孙华.基于视频的交通目标跟踪方法研究[J].计算机技术与发展,2010,20(7):44-47. 被引量:5
  • 2刘卫光,李广鑫.一种通用的视频目标跟踪系统设计[J].计算机技术与发展,2009,19(10):110-112. 被引量:5
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object track- ing[ J ]. IEEE transaction on pattern analysis and machine in- telligence ,2003,25 (5) :564-577.
  • 4Luo Cheng, Cai Xiongcai, Zhang Jian. Robust object tracking using the particle filtering and level set methods:a compara- tive experiment [ C ]//Proceedings of the 2008 IEEE 10th Workshop on Multimedia Signal Processing. Cairns, Australia: [ s. n. ] ,2008:359-364.
  • 5Cheng Y. Meanshift, Mode Seeking and Clustering [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17 ( 8 ) :790-799.
  • 6施华,李翠华.视频图像中的运动目标跟踪[J].计算机工程与应用,2005,41(10):56-58. 被引量:11
  • 7Collins R. Meanshift blob tracking through scale space [ C ]/! IEEE Conference on Computer Vision and Pattern Recognni- tion. [ s. 1. ]: [ s. n. ] ,2003:234-240.
  • 8McFarlane N J B, Schofield C P. Segmentation and tracking of piglets in images [ J]. Machine Vision and Applications, 1995 (8) :187-193.
  • 9Hang Z, Faugeras O D. Three dimensional motion computation and object segmentation in along sequence of stereo frames [ J ]. International Journal on Computer Vision, 1992 ( 3 ) : 211 -241.
  • 10Liu Y, Huang T S. Determining straight line correspondences hvm intensity images [ J ]. Pattern Recognition, 1991,24 ( 6 ) : 119-216.

二级参考文献28

  • 1刘宇杰,秦肖臻,彭力,杨文俊,汪秉文.一种基于P2P的视频点播系统设计[J].计算机技术与发展,2007,17(1):193-195. 被引量:5
  • 2Bruno M S. Bayesian methods for multi - aspect target tracking in image sequences [ J ]. IEEE Trans. Signal Processing, 2004,52(7) : 1848 - 1861.
  • 3Welch G,Bishop G. An introduction to the Kalman filter[EB/ OL]. 2006 - 08 - 10. http://www, cs. unc. edu/weleh/ kalman.
  • 4Kuo C M, Chung S C, Shih P Y. Kalman filtering based rate constrained motion estimation for very low bit video coding [ J ]. IEEE Trans. CSVT.2006,16 (1) : 3 - 18.
  • 5刘书明,罗军辉.ADSPSHARC系列DSP应用系统设计[M].北京:电子工业出版社,2002.
  • 6Lucchese L,Doretto G,Cortelazzo G M. A Frequency Domain Technique for Range Data Registration[J]. IEEE Trans. PAMI, 2002,24(11 ) : 1469 - 1484.
  • 7Kass M, Witkinm A, Terzopoulos D. Snakes.. Active contour models[J]. International Journal on Computer Vision, 1998 (4) :321-331.
  • 8Kim W, Lee C Y, Lee J J. Tracking moving object using Snake's Jump based on image flow[J]. Mechanics,2001 (11) : 119 - 216.
  • 9Liu Y, Huang T S. Determining straight line correspondences from intensity images[ J ]. Pattern Recognition, 1991,24 (6) : 489 - 504.
  • 10Hang Z, Faugeras O D. Three dimensional motion computation and object segmentation in a long scquence of stereo frames [ J ]. International Jottrnal on Computer Vision, 1992 (3) : 211 - 241.

共引文献17

同被引文献125

引证文献14

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部