期刊文献+

粗粒度部分动态可重构的人脸检测 被引量:1

Dynamical Coarse-Grained Partially Reconfigurable Face Detection
下载PDF
导出
摘要 人脸检测系统应用在嵌入式环境中需满足多种约束,高计算密集性、控制密集性是实时实现困难的主要原因.文中提出一种基于名为"REMUS-Ⅱ"的粗粒度动态可重构架构的人脸检测系统,把层叠型AdaBoost检测算法划分成多个非连续子任务,通过邮箱通信调度、配置流和数据流优化方法来提高指令级并行度和任务级并行度.实验结果表明,检测分辨率为640×480的图片可获得17帧/s的平均检测速度,正面人脸检测率保持在95%以上.在TSMC 65 nm CMOS工艺、200 MHz工作频率下,REMUS-Ⅱ面积约为24 mm^2,功率约为194 mW. Face detection system needs to meet a variety of constraints in embedded environments, but the high computational/control intensive features make the real-time implementation difficult. This paper presents a face detection system based on a dynamical coarse-grained partially reconfigurable platform called "REMUS- Ir'. The cascade AdaBoost-based detection algorithm is divided into several non-consecutive sub-tasks. Mailbox scheduling, configuration flow and data flow optimization methods improve the instruction-level and task-level parallelism. Experiment results show that this approach with a 200 MHz clock can process about 17 frames per second on 640×480 images. Its detection rate is over area is about 24 mm2 in TSMC's 65 nm logic process. 95%. The system consumes about 194 mW, and its
出处 《应用科学学报》 EI CAS CSCD 北大核心 2012年第3期299-305,共7页 Journal of Applied Sciences
基金 国家“863”高技术研究发展计划基金(No.2009AA011700) 江苏省高校“青蓝工程”项目基金资助
关键词 粗粒度可重构 动态 人脸检测 ADABOOST coarse-grained reconfigurable, dynamical, face detection, AdaBoost
  • 相关文献

参考文献17

  • 1ZHANG Cha, ZHANG Zhengyou. Face detection and adaptation [M]. USA: Morgan & Claypool Publish- ers, 2010: 29-44.
  • 2PAUL V, JONES M. Rapid object detection using a boosted cascade of simple features [C]//Computer Vision and Pattern Recognition, IEEE Computer So- ciety Conference on, 2001, 1: 511-518.
  • 3HORI Y, KURODA T. A 0.79-mm2 29-mW real-time face detection core [J]. IEEE Journal of Solid-State Circuits, 2007, 42(4): 790-797.
  • 4JUNGUK C, BENSON B, MIRZAEI S, RYAN K. Paral- lelized architecture of multiple classifiers for face de- tection [C]//Application-Specific Systems, Architec- tures and Processors, IEEE International Conference on, 2009: 75-82.
  • 5THEOCHARIDES T, VIJAYKRISHNAN N, IRWIN M J. A parallel architecture for hardware face detection [C]//IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, 2006: 2-3.
  • 6JUNGUK C, SHAHNAM M, JASON O, RYAN K. FPGA- based face detection system using Haar classifiers [C]//Proceeding of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 2009: 103-112.
  • 7CHE Ming, CHANG Yisong. A hardware/software co- design of a face detection algorithm based on FPGA [C]//2010 International Conference on Measuring Technology and Mechatronics Automation, 2010, 1: 109-112.
  • 8YANG Ming, CRENSHAW J, AUGUSTINE B, MAREACHEN R, Wu Ying. AdaBoost-based face detection for embedded systems [J]. Computer Vision and Image Understanding, 2010, 114(11): 1116-1125.
  • 9HEFENBROCK D, OBERG J, NHAT T, RYAN K, SCOTT B B. Accelerating viola-jones face detection to FPGA-level using GPUs [C]//Field-Programmable Custom Computing Machines (FCCM), 2010 18th IEEE Annum International Symposium on, 2010: 11-18.
  • 10MARTINEZ-ZAI=tZUELA M, DIAZ-PERNAS F J, ANTON- RODRIGUEZ M, PEROZO-RONDON F, GONZALEZ- ORTEGA D. AdaBoost face detection on the GPU us- ing Haar-like features [C]//4th International Work- conference on the Interplay Between Natural and Ar- tificial Computation, IWINAC 2011, 6687: 333-342.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部