摘要
将模拟退火算法嵌入到粒子群优化(paRtical swarm optimization,PSO)算法中,并对PSO产生的最优适应值进行重新评价,以此构成混合粒子群优化算法(PSO-SA).将PSO-SA算法应用于巡航导弹的航迹规划,不仅可以避免PSO陷入局部最优,而且能快速有效地完成离线和在线规划任务,获得理想的三维航迹.仿真结果验证了该算法的有效性,且对同一起始位置所规划出的航程较PSO算法短,可有效节约导弹燃料.
A hybrid planning algorithm PSO-SA is presented, which is an integration of the simulated an- nealing algorithm (SA) and the particle swarm optimization (PSO) algorithm. PSO-SA is used to evaluate the optimal fitness value generated by PSO. PSO-SA used in route planning of cruise missile can avoid the common defect of premature convergence, accomplish the static and dynamic route planning assignment quickly, and produce an ideal 3-D flight path. Simulations demonstrate feasibility of the algorithm. Compared to PSO, PSO-SA achieves a shorter range in the same initiM locations, thus, cruise missiles consume less fuel.
出处
《应用科学学报》
EI
CAS
CSCD
北大核心
2012年第3期317-323,共7页
Journal of Applied Sciences
基金
国家自然科学基金(No.91016004)资助
关键词
低空突防
离线规划
在线规划
粒子群优化
模拟退火
low altitude penetration, static route planning, dynamic route planning, particle swarm optimiza-tion (PSO), simulated annealing (SA)