期刊文献+

最大度为11的平面图的列表全染色 被引量:1

List Total Coloring of Planar Graph with Δ=11
下载PDF
导出
摘要 在著名的列表全染色猜想(LTCC)仍未完全证明的情况下,证明了对于最大度为11且不含相邻三角形的平面图是12全可选择的,从而进一步支持了列表全染色猜想. For list total coloring, the famous list total coloring conjecture (LTCC in short) has not been proofed perfectly. In this paper, it is proved that the graph G satisfies LTCC if △(G) = 11 and without adjacent triangles.
作者 陈明
出处 《嘉兴学院学报》 2012年第3期28-30,共3页 Journal of Jiaxing University
关键词 平面图 最大度 列表全染色 三角形 planar graph maximum degree list total coloring triangles
  • 相关文献

参考文献5

  • 1VIZING V G. Vertex coloring with a given colors [J]. Discrete Analiz, 1976, 29: 3-10.
  • 2Erdos P, RUBIN A L, TAYLOR H. Choosability in graphs [J]. Congres Number, 1979, 26: 125-157.
  • 3BORODIN O V, KOSTOCHKA A V, WOODALL D R. List edge and list total coloring of multigraphs [J]. Combin Theory Ser B, 1997, 71 (2): 184-204.
  • 4WANG Weifan, LIH Ko-Wei. List Total coloring of Halin Graphs[J]. JARS Combin, 2005 (77) : 53-63.
  • 5HOU JIANFENG, LIU GUIZHEN, CAI JIANSHENG. List edge and List Total coloring of planar graphs without 4- cycles [J]. Theoretical Computer Science, 2006, 369: 250-255.

同被引文献5

  • 1BONDY J A, MURTY U S R. Graph Theory with Applications [M]. London: MacMillan, 1976.
  • 2BORODIN O, KOSTOCHKA A, WOODALL D. List edge and list total colourings of multigraphs [J]. J. Combin Theory Ser B, 1997, 71: 184-204.
  • 3WANG W, LIH K. Choosability and edge choosability of planar graphs without intersecting triangles [J]. SIAM J Discrete Math, 2002, 15: 538-545.
  • 4CHANG G J, HOU J, ROUSSEL N. On the total choosability of planar graphs and of sparse graphs [J] Inform Proc Lett, 2010, 110: 849-853.
  • 5HOU JIANFENG, LIU GUIZHEN, WU JIANLIANG. Some results on list total colorings of planar graphs [J]. Lecture NotesComput Sci, 2007 (4489): 320-328.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部