期刊文献+

基于二部图半监督方法的查询日志实体挖掘 被引量:2

Bipartite graph based semi-supervised method for entity mining from the query log
原文传递
导出
摘要 基于用户查询日志的命名实体挖掘的目标是从用户查询日志中挖掘一组具有指定类别的命名实体。为解决已有用户查询日志实体挖掘研究工作中的种子实体不充分的问题,提出了一种基于二部图的半监督排序方法,利用实体之间的关系(实体共享查询模板)来改善实体排序效果。该方法首先基于候选实体和查询模板构建一个二部图,然后基于二部图将种子实体的类别相关性传播到其他候选实体,最后按照类别相关性得分对候选实体进行排序,并进一步给出方法中迭代过程的等价优化框架。实验结果表明本文提出的方法优于基准方法,具有较好的挖掘效果。 Named entity mining from query log aims to mine a list of named entities with the specific type from the query log.A bipartite graph based semi-supervised ranking method,which leverages the relationship between the entities(i.e.entities share common templates) to help improve the ranking,was proposed to resolve the scarcity of seed entity in existing work about named entity mining from the query log.First,a bipartite graph based on the candidate entities and templates was constructed.Then,the relevance score was propagated from the seed entities to other candidate entities.Finally,the candidate entities were ranked according to the relevance score.An optimization framework for the iterative process was further developed in this ranking method.Experimental results show the effectiveness of the proposed method.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第5期32-37,42,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(60903139 60873243 60933005) 国家"八六三"高技术研究发展计划基金资助项目(2010AA012502 2010AA012503)
关键词 用户查询日志 命名实体挖掘 半监督方法 二部图 query log named entity mining semi-supervised method bipartite graph
  • 相关文献

参考文献22

  • 1LISA F RAU. Extracting company names from text [ C ]//Proceedings of the 7th Conference on Artificial Intelligence Applications. Washington: IEEE Computer Society, 1991:29-32.
  • 2HAI LEONG CHIEU, HWEE TOU NG. Named entity recognition: a maximum entropy approach using global information[C]//Proceedings of the 19th International Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2032: 1-7.
  • 3KOICHI TAKEUCHI, NIGEL COLLIER. Use of support vector machines in extended named entity recognition [C]//Proceedings of the 6th Conference on Natural Language Learning. Stroudsburg, PA: Association for Computational Linguistics, 2002 : 1-7.
  • 4HOIFUNG POON, PEDRO DOMINGOS. Joint inference in information extraction [ C ]//Proceedings of the 22nd National Conference on Artificial Intelligence. [ S. l. ] : AAAI Press, 2007:913-918.
  • 5COLLINS MICHAEL, SINGER YORAM. Unsupervised models for named entity classification [ C ]//Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. [S. l. ] :[s.n. ], 1999:100-110.
  • 6WHITELAW CASEY, KEHLENBECK ALEX, PETROVIC NEMANJA, et al. Web-scale named entity recognition[ C ]//Proceeding of the 17th ACM Conference on Information and KNOWLEDGE Management. New York: ACM Press, 2008 : 123-132.
  • 7ETZIONI OREN, CAFARELLA MICHAEL, DOWNEY DOUG, et al. Unsupervised named-entity extraction from the web: an experimental study [ J ]. Artificial Intelligence, 2005, 165(1 ) :91-134.
  • 8ENRIQUE ALFONSECA, SURESH MANANDHAR. An unsupervised method for general named entity recognition and automated concept discovery [ C ]//Proceedings of the 1st International Conference on General WordNet. [S.l. ] :[s.n. ], 2002:1-9.
  • 9DOUG DOWNEY, MATTHEW BROADHEAD, OREN ETZIONI. Locating complex named entities in web text [C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, 2007:2733-2739.
  • 10RICHARD EVANS. A framework for named entity recognition in the open domain[ C]//Proceedings of the Recent Advances in Natural Language Processing. [ S. l. ] : John Benjamins Publishing Company, 2003:137-144.

二级参考文献7

  • 1Borthwick Andrew, Sterling J. , Agichtein E, Grishman R.. NYU: Description of the MENE Named Entity System as used in MUC-7 [C]//Proc. Seventh Message Understanding Conference. 1998.
  • 2Cucehiarelli Alessandro, Velardi P. Unsupervised Named Entity Recognition Using Syntactic and Semantic Contextual Evidence [J]. Computational Linguistics,2001,27(1): 123-131.
  • 3Evans Richard. A Framework for Named Entity Recognition in the Open Domain[C]// Proc. Recent Ad vances in Natural Language Processing. 2003.
  • 4Pasca, M. Weakly-supervised discovery of named entities using web seareh queries[C]// Proceedings of the Sixteenth ACM Conference on Conference on information and Knowledge Management, 2007.
  • 5D. M. Blei and J. D. Lafferty. Correlated topic models[C]// Proceedings of the 23rd International Conference on Machine Learning, 2006:113-120.
  • 6T. Hofmann. Probabilistic latent semantic indexing [C]// SIGIR '99: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, 1999: 50-57.
  • 7D. M. Blei, A. Y. Ng and M. I. Jordan. Latent dirichlet allocation[J]. Journal of Machine Learning Research,2003, 3(1): 993-1022.

共引文献7

同被引文献23

  • 1CNNIC.第34次中国互联网络发展状况统计报告[R]. 2014.
  • 2Du J, Zhang Z, Yan J, et al. Using Search Session Context for Named Entity Recognition in Query[C]. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2010: 765-766.
  • 3Jonnalagadda S, Cohen T, Wu S, et al. Using Empirically Constructed Lexical Resources for Named Entity Recognition [J]. Biomedical Informatics Insights, 2013, 6(1): 17-27.
  • 4Gross O, Doucet A, Toivonen H. Named Entity Filtering Based on Concept Association Graphs [C]. In: Proceedings of the 14th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing), Samos, Greece. 2013.
  • 5Dalvi B, Xiong C, Callan J. A Language Modeling Approach to Entity Recognition and Disambiguation for Search Queries [C]. In: Proceedings of the 1st International Workshop on Entity Recognition & Disambiguation. ACM, 2014: 45-54.
  • 6Wen B, Xiao S, Luo Y, et al. Unsupervised Chinese Personal Name Recognition Using Search Session [J]. Journal of Computational Information Systems, 2013, 9(6): 2201-2208.
  • 7Pasca M. Weakly-supervised Discovery of Named Entities Using Web Search Queries [C]. In: Proceedings of the 16th ACM Conference on Conference on Information and Knowledge Management. ACM, 2007: 683-690.
  • 8Levenshtein V I. Binary Codes Capable of Correcting Deletions, Insertions and Reversals [J] Soviet Physics Doklady, 1966, 10: 707-710.
  • 9He Qi, Jiang D, Liao Z, et al. Web query recommendation via sequential query prediction[C] //Proc of the 25th IEEE International Conference on Data Engineering. [S. l.] :IEEE Press, 2009:1443-1454.
  • 10Guo J, Cheng X, Xu G, et al. A structured approach to query recommendation with social annotation data[C] //Proc of the 19th ACM International Conference on Information and Knowledge Management. [S. l.] :ACM Press, 2010:619-628.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部