期刊文献+

一类灰色二层线性多目标规划问题及其算法 被引量:2

A grey bilevel linear multi-objective programming problem and its algorithm
原文传递
导出
摘要 将下层带多目标函数的二层线性规划与灰色理论相结合,提出了一类灰色二层线性多目标规划问题,给出了该问题的数学模型和相关概念。在约束域为非空紧集的条件下,证明了漂移型灰色二层线性多目标规划问题的最优解一定可以在约束域的极点达到,并提出了一个基于k次最好法的求解算法,证明了该算法具有全局收敛性,算例分析验证了所提算法是有效的。 Based on the bilevel linear multi-objective programming problem with multiple objectives at the lower level and the characteristic of the grey system, a grey bilevel linear multi-objective programming problem is put forward, and its model and theorem are given. Under the assumption of the constraint region of the proposed model nonempty and compactness, it is shown that the optimal solution of the drifting grey bilevel linear multi-objective programming prob- lem can be reached on the extreme point of the constraint region. Finally, an algorithm based on the k-th best method is developed and its global convergence is proven. Numerical examples show that the proposed algorithm is effective.
作者 刘兵兵
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第5期122-126,共5页 Journal of Shandong University(Natural Science)
基金 安徽省高校优秀青年人才基金资助项目(2009SQRZ121)
关键词 二层线性多目标规划 灰色系统 约束域 极点 bilevel linear multi-objective programming grey system constraint region extreme point
  • 相关文献

参考文献9

  • 1BARD J F. Practical bilevel optimization: algorithms and applications [M]. Dordrecht: Kluwer Academic Publishers, 1998: 1-33.
  • 2MIGADALAS A, PARADALOS P M, VARBRAUD P. Multilevel optimization algorithms and applications [ M ]. Dordrecht: Kluwer Academic Publishers, 1998 : 3-45.
  • 3DEMPE S. Foundations of bilevel programming[ M]. Dordrecht:Kluwer Academic Publishers, 2002: 21-60.
  • 4DEMPE S. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints [ J ]. Optimization, 2003, 52:333-359.
  • 5CALVETE H I, GALE C. Linear bilevel programs with multiple objectives at the upper level [ J ]. Journal of Computational and Applied Mathematics, 2010, 234 (4) : 950-959.
  • 6BONNEL H, MORGAN J. Semivectorial bilevel optimization problem: penalty approach[ J ]. Journal of Optimization Theory and Applications, 2006, 131 ( 3 ) : 365-382.
  • 7ANKHILI Z, MANSOURI A. An exact penalty on bilevel programs with linear vector optimization lower level[ J ]. European Journal of Operational Research, 2009, 197:36-41.
  • 8刘三阳,于力,杨亚红.一类二层多目标规划的若干性质[J].运筹学学报,2006,10(3):126-128. 被引量:5
  • 9张恩路,孟宪云,李智慧,滕春贤.灰色二层线性规划问题及其解法[J].系统工程理论与实践,2009,29(6):132-138. 被引量:5

二级参考文献14

  • 1万仲平,肖昌育,王先甲,肖克强,黄要桂,彭向阳.不确定市场下的一种二层规划最优竞价模型[J].电力系统自动化,2004,28(19):12-16. 被引量:21
  • 2赵茂先,高自友.求解线性双层规划的割平面算法[J].北京交通大学学报,2005,29(3):65-69. 被引量:7
  • 3Fortuny J, McCall B. A representation and economic interpretation of a bilevel programming problem[J]. J Oper Res Soc, 1981, 32(9): 783-792.
  • 4Candler W, Townsley R. A linear bilevel programming problem[J]. Computers & Operations Research, 1982(9): 59-72.
  • 5Bialas W F, Karwan M H. Two-level linear programming[J]. Management Science, 1984, 30(8): 1004 1020.
  • 6Nicolaisen J, Contrera J, Conejo A J, et al. Forecasting next day electricity prices by time series models[J]. IEEE Trans on Power Systems, 2002, 17(2): 342-348.
  • 7Bard J F. Practical Bilevel Optimization: Algorithms and Applications[M]. Boston: Kluwer Academic, Publishers. 1998.
  • 8G.R. Reeves, R.C. Reid. Minimum values over the efficient set in multiple objective decision making. European Journal of Operational Research, 1988, 36: 334-338.
  • 9Benson.H.P An all-linear programming relaxation algorithm for optimizing over the efficient set. Journal of Global Optimization, 1991, 1: 83-104.
  • 10W.W.Hogan. Point-to-set maps in mathematical programming. SIAM Review, 1973, 15(3):591-603.

共引文献7

同被引文献25

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部