摘要
通过在遗传算法中引入个体浓度的选择机制和记忆机制,确保了进化过程中种群内个体的多样性,避免局部收敛,保证了算法朝优化方向进化.实验结果表明改进算法能跳出局部收敛,有效避免了早熟产生和遗传退化现象出现.
Intelligent test paper auto-generation deals with a multi-objective combinatorial optimization. As a common tool to generate test paper automatically, Genetic algorithm could not achieve the best solution frequently due to the local convergence. In this paper the concentration mechanism and memory mechanism are combined into the genetic algorithm to ensure the population diversity and avoid local convergence. Experiment results show the proposed algorithm can be applied to generate test paper automatically and effectively.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第5期98-101,共4页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
组合优化
智能组卷
遗传算法
局部收敛
combinatorial optimization test paper auto-generation genetic algorithm local converging