摘要
证明了若环T是具有一对零同态的Morita context环(A,B,M,N,ψ,φ),则有T/L■A/I⊕B/J,其中L=(I,J,M,N)是环T的理想,I,J分别是A,B的理想;同时证明了一对具有零同态的Morita context环T=(A,B,M,N)是(L,k+l)-正则环,如果其中的环A和B分别是(I,k)-,(J,l)-正则环,这里L=(I,J,M,N)是环T的理想,且任意给定的k,l∈N.
This paper identified that if ring T is a Morita context(A,B,M,N,ψ,φ) with zero pairings,then T/L■A/I⊕B/J,where L,I,J are the ideals of ring T,A,B respectively.It also proved that Morita context ring T=(A,B,N,M) with zero parings is(L,k+l)-regular if ring A and B are(I,k)-,(J,l)-regular respectively,where L=(I,J,M,N) is an ideal of ring T,and some given k,l∈N.
出处
《杭州师范大学学报(自然科学版)》
CAS
2012年第3期245-248,共4页
Journal of Hangzhou Normal University(Natural Science Edition)