期刊文献+

Morita Context的(I,k)-正则性

The (I,k)-Regularity of Morita Context
下载PDF
导出
摘要 证明了若环T是具有一对零同态的Morita context环(A,B,M,N,ψ,φ),则有T/L■A/I⊕B/J,其中L=(I,J,M,N)是环T的理想,I,J分别是A,B的理想;同时证明了一对具有零同态的Morita context环T=(A,B,M,N)是(L,k+l)-正则环,如果其中的环A和B分别是(I,k)-,(J,l)-正则环,这里L=(I,J,M,N)是环T的理想,且任意给定的k,l∈N. This paper identified that if ring T is a Morita context(A,B,M,N,ψ,φ) with zero pairings,then T/L■A/I⊕B/J,where L,I,J are the ideals of ring T,A,B respectively.It also proved that Morita context ring T=(A,B,N,M) with zero parings is(L,k+l)-regular if ring A and B are(I,k)-,(J,l)-regular respectively,where L=(I,J,M,N) is an ideal of ring T,and some given k,l∈N.
作者 叶建芳
出处 《杭州师范大学学报(自然科学版)》 CAS 2012年第3期245-248,共4页 Journal of Hangzhou Normal University(Natural Science Edition)
关键词 (I k)-正则性 MORITA context环 上三角矩阵环 形式上三角 零同态 (I k)-regularity Morita context ring triangular matrix ring triangular matrix in form zero pairings
  • 相关文献

参考文献5

二级参考文献14

  • 1王尧,任艳丽.具有一对零同态的Morita Context环(Ⅰ)[J].吉林大学学报(理学版),2006,44(3):318-324. 被引量:14
  • 2CHEN Huan-yin. Morita contexts with many units [J]. Comm. Algebra, 2002, 30(3): 1499-1512.
  • 3HAGHANY A. Morita contexts and torsion thcorles[J]. Math. Japon., 1995, 42(1): 137-142.
  • 4HAGHANY A. Hopficity and co-Hopficity for Morita contexts [J]. Comm. Algebra, 1999, 27(1): 477-492.
  • 5MORITA K. Duality for modules and its application on the theory of rings with minimum conditions [J]. Science Reports of the Tokyo Kyoiku Daigoku Sect. A, 1958, 6: 83-142.
  • 6JACOBSON N. Structure of Rings [M]. American Mathematical Society, Providence, R.I. 1964.
  • 7YE Yuan-qing. Semiclean rings [J]. Comm. Algebra, 2003, 31(11): 5609-5625.
  • 8NICHOLSON W K. SANCHEZ C E. Rings with the dual of the isomorphism theorem [J]. J. Algebra, 2004, 271(1): 391406.
  • 9MONK G S. A characterization of exchange rings [J]. Proc. Amer. Math. Soc., 1972, 35: 349-353.
  • 10NICHOLSON W K. Lifting idempotents and exchange ring [J]. Trans. Amer. Math. Soc., 1977, 229: 269-278.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部