摘要
To exploit the effect of modulation schemes on the best relay selection,a novel Jointing Modulation schemes max-min criterion(JM-max-min) is proposed firstly for Two-Way De-Noise-and-Forward(DNF) Opportunistic Relaying systems(TW-DNF-OR) by aiming at minimizing the Pairwise Error Probability(PEP) of Multi-Access(MA) phase which dominates the error per-formance of TW-DNF-OR due to the presence of MA interference.The proposed JM-max-min criterion integrates perfectly the minimum distances of constellations and the relay links gains.Then,with the proposed JM-max-min criterion,we analyze the Symbol Error Probabilities(SEPs) of MA phase and BroadCast(BC) phase by using the approximated mathematics analysis,and present the corresponding closed-form expressions to SEPs.The numerical analysis shows,for a given modulations combination at both sources,the TW-DNF-OR systems with the proposed JM-max-min criterion outperform the one with the conventional max-min criterion.
To exploit the effect of modulation schemes on the best relay selection,a novel Jointing Modulation schemes max-min criterion(JM-max-min) is proposed firstly for Two-Way De-Noise-and-Forward(DNF) Opportunistic Relaying systems(TW-DNF-OR) by aiming at minimizing the Pairwise Error Probability(PEP) of Multi-Access(MA) phase which dominates the error per-formance of TW-DNF-OR due to the presence of MA interference.The proposed JM-max-min criterion integrates perfectly the minimum distances of constellations and the relay links gains.Then,with the proposed JM-max-min criterion,we analyze the Symbol Error Probabilities(SEPs) of MA phase and BroadCast(BC) phase by using the approximated mathematics analysis,and present the corresponding closed-form expressions to SEPs.The numerical analysis shows,for a given modulations combination at both sources,the TW-DNF-OR systems with the proposed JM-max-min criterion outperform the one with the conventional max-min criterion.
基金
Supported by the National Natural Science Foundations of China (No. 61071090,No. 61171093)
the Postgraduate Innovation Programs of Scientific Research of Jiangsu Province (CX10B-184Z,CXZZ11_0388)
the Project 11KJA510001 and PAPD