期刊文献+

扩展信息最大化盲源分离算法的研究 被引量:1

Research on blind source separation algorithm of the extension information maximization
下载PDF
导出
摘要 盲源分离技术是信号处理和神经网络领域近年来的一个热点研究课题,由于其能够从观测的混合信号中恢复出源信号,而对源信号和混合系统的先验知识要求很少,因此在语音信号处理、无线信号处理、生物医学信号处理、地震信号处理,以及图像增强等方面都具有非常重要的理论意义和实用价值。信息最大化盲源分离算法能够有效地分离语音信号的瞬时混合,但是不能分离超高斯信号(如语音信号)和亚高斯信号(如正弦信号)的混合。基于此,本文讨论了扩展信启、最大化盲源分离算法,通过仿真表明,该算法可以有效的对各种源信号的线性即时混合进行分离,实验证明了该算法的有效性。 Blind Source Separation (BSS) is a new research field of the signal processing and Neural Network Because it can recover the source signals from the observed signals without any prior knowledge of the mixing system and source signals.So it has very important theory significance and utility value in audio signal processing,wireless signal processing,biomedical signal processing,earthquake signal processing,image enhancement and so on. Blind source separation algorithm of information maximization can effectively separates mixed instantaneous signals from voice signals, but it can not separates super-Gaussian signals (such as voice signals) and sub-Gaussian signals (such as sine signal) mix. Therefor, author proposes the blind source separation algorithm of information maximization , Experiment result shows that the algorithm can extract independent source from the hybrid mixture of any super-Gaussian and sub-Gaussian signals and displays a good calculation property .
出处 《电子测试》 2012年第5期16-19,24,共5页 Electronic Test
关键词 盲源分离 信息最大化 超高斯 亚高斯 blind source separation informatiom maximization Super-Gau ssian. Sub-Gau ssian
  • 相关文献

参考文献9

二级参考文献81

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2张辉,张晋.基于子空间跟踪的盲MMSE多用户检测算法[J].电波科学学报,2004,19(3):311-315. 被引量:6
  • 3Comon P. Independent component analysis,a new concept [J]. Signal Processing, 1994, 36(3) :287~314.
  • 4Jean-Francois Cardoso and Beate Hvam Laheld. Equivariant adaptive source separation[J]. IEEE Trans. on Signal Processing ,1996, 44(12) :3017~3029.
  • 5E Bingham and A Hyvarinen. A fast fixedpoint algorithm for independent component analysis of complex-valued signals [J]. Int.J. of Neural Systems, 2000, 10(1): 1~8.
  • 6Comon P. Independent Component Analysis, A New Concept. Signal Processing, 1994,36:287-314.
  • 7Bell AJ, Sejnowske TJ. An Information Maximization Approach to Blind Separation and Blind Deconvolution.Neural Computation, 1995, (7): 1129-1159.
  • 8Amari S, et al. A New Learning Algorithm for Blind Signal Separation. Advances in Neural Information Processing Systems 8, 1996,MIT press. 757-763.
  • 9Lee T W, et al. Independent Component Analysis for Sub-Gaussian and Super-Gaussian Mixtures. proc.4th Joint Symp. Neural Computation 7,1995. 132-139.
  • 10Jung TP,et al. Extended ICA Removes Artifacts from Electroencephalographic Recordings. Advances in Neural Information Processing Systems 10,1997.

共引文献53

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部