期刊文献+

基于拉格朗日插值的参数曲面隐式化

Implicitization of parametric surfaces by means of Lagrange interpolation
下载PDF
导出
摘要 首先给出了Dixon矩阵的算法,并以此为基础,利用Dixon矩阵以及拉格朗日插值的基本理论,给出了参数曲面隐式化的一种方法。该方法有效克服了用经典结式方法求参数曲面隐式方程的中间膨胀问题。既减少了计算量,又节省了时间和空间,提高了参数曲面隐式化的速度。最后,通过实例,证明了本文算法的准确性和有效性。 The algorithm of Dixon’s matrix is first derived and then a method of the implicitization of parametric surfaces,which is based on Dixon matrix and Lagrange interpolation,is given.This method not only reduces the computational cost,but also saves the time and space cost.Further,it speeds up the implicitization of the parametric surfaces.Finally,some examples are provided to prove the accuracy and efficiency of the algorithm.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期119-123,共5页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 北京化工大学中央高校基本科研业务费项目(00621605) 北京科技大学中央高校基本科研业务费项目(00610806) 国家自然科学基金(11101029)
关键词 Dixon矩阵 LAGRANGE插值 参数曲面隐式化 Dixon’s matrix Lagrange interpolation implicitiation of parametric surface
  • 相关文献

参考文献9

  • 1吴坚,郑康平,任工昌.用于几何造型的隐式曲面[J].西北轻工业学院学报,2002,20(1):63-67. 被引量:2
  • 2Cox D,Little J,O' Shea D. Ideals,variteties and algorithms:an introduction to computational algebraic geometry and commutative algebra[M].New York:springer-verlag,1996.112-158.
  • 3王东明.符号计算选讲[M]北京:清华大学出版社,2003150-192.
  • 4Sederberg T W,Zheng J M. Algebraic methods for computer aided geometric design[A].Amesterdam:Elservier Science,2002.363-387.
  • 5李耀辉,冯勇,薛继伟.基于插值法计算Dixon结式[J].燕山大学学报,2005,29(2):103-111. 被引量:1
  • 6Wang D M. A simple method for implicitizing rational curves and surfaces[J].Journal of Symbolic Computation,2004,(01):899-914.doi:10.1016/j.jsc.2004.02.004.
  • 7于建平,孙永利.多项式参数曲线隐式化的新方法[J].北京化工大学学报(自然科学版),2008,35(3):108-111. 被引量:2
  • 8Marco A,Martinez J J. Implicitization of rational surfaces by means of polynomial interplotation[J].Computer Aided Geometric Design,2002,(5):327-344.doi:10.1016/S0167-8396(02)00094-8.
  • 9赵若晨,于建平,孙永利.基于牛顿插值的多项式参数曲线隐式化[J].北京化工大学学报(自然科学版),2011,38(4):140-143. 被引量:2

二级参考文献36

  • 1孙永利,于建平,马玉杰,夏纯.参数曲线的隐式化[J].北京化工大学学报(自然科学版),2007,34(2):211-213. 被引量:1
  • 2Cox D, Little J, O' Shea D. Ideals, Variteties, and Algorithms:an introduction to computational algebraic geometry and commutative algebra[ M ]. New York: Springer, 1996: 112-158.
  • 3Wang D M. A simple method for implicitizing rational curves and surfaces [ J]. Journal of Symbolic Computation, 2004, 38(1): 899-914.
  • 4Sun Y L, Yu J P. Implicitization of parametric curves via Lagrange Interpolation[J]. Computing, 2006, 77: 379-386.
  • 5Sederberg T, Goldman R, Du H. Implicitizing rational curves by the method of moving algebraic curves [ J ]. Journal of Symbolic Computation, 1997, 23 : 153-175.
  • 6Sederberg T W, Zheng J M. Algebraic methods for computer aided geometric design[ M]//JFarin G, Hoschek J, Kim M S. Handbook of Computer Aided Geometric Design. Amsterdam: Elservier Science, 2002: 363-387.
  • 7Song N, Goldman R. u-bases for polynomial systems in one variable [ J ]. Computer Aided Geometric Design, 2009, 26(2) : 217-230.
  • 8Marco A, Martinez J J. Using polynomial interpolation for implicitizing algebraic curves[ J]. Computer Aided Geometric Design. 2001. 18(4) : 309-319.
  • 9Yang L, Hou X R. Gather-and-Sift: A Symbolic Method for Solving Polynomial Systems [A]. Proceeding of First Asian Technology Conference in Mathematics [C]. 1995,771-780.
  • 10Saxena T. Efficient Variable Elimination Using resultants [D].Ph. D Dissertation, State University of NewYork, 1997.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部