期刊文献+

基于压缩传感的重构算法研究 被引量:1

Research of Compressive Sensing Reconstruction Algorithm
下载PDF
导出
摘要 传统的奈奎斯特采样定理规定采样率必须是频率带宽两倍,浪费大量采样资源。如果信号可以稀疏表示,那么可以采用压缩传感技术重构原始信号,压缩传感能在采样的同时对数据进行适当压缩,节省系统资源。现存的压缩传感重构算法对图像边缘和纹理的重构效果都不太理想,提出一种基于全变差的图像重构算法,该算法能稳定有效地重构图像的边缘和纹理。 The rate of sampling a signal must be at least twice the bandwidth of its frequency according to the classical Nyquist theorem. It will cost large amount of sampling resource. If the signal has sparse representation, compressive sensing can be used to reconstruct the original signal. CS has the ability to compress signal during the process of sampling. The existed CS algorithms of reconstruction can' t recover image' s edges and texture ideally. In this paper, a new image reconstruction algorithm based on Total Variation is proposed, which can recover image' s edges and texture effectively and stably.
作者 童露霞 王嘉
出处 《电视技术》 北大核心 2012年第11期38-40,共3页 Video Engineering
关键词 压缩传感 重构 稀疏 compressive sensing reconstruction sparse
  • 相关文献

参考文献5

  • 1TSIAG Y,DONOHO D. Extensions of compressed sensing[J].Signal Processing,2006,(03):533-548.
  • 2CANDES E,TAO T. Robust uncertainty principles exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information theory,2006,(02):489-509.
  • 3BOYD S,VANDENBERGHE L. Convex optimization[OL].http://ww w.stanford.edu/~ boyd/cvxbook/bv_cvxbook.pdf,2011.
  • 4GAO Zhirong,XIONG Chengyi,ZHOU Cheng. Compressive sampling with coefficients random permutations for image compression[A].IEEE Press,2011.321-324.
  • 5YU Guoshen,GUILLERMO S. Statistical compressive sensing of Gaussian mixture models[A].IEEE Press,2011.3728-3731.

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部