期刊文献+

分数阶超混沌系统的耦合广义投影同步及其在保密通信中的应用 被引量:3

Coupled Generalized Projective Synchronization of the Fractional-order Hyperchaotic System and Its Application in Secure Communication
下载PDF
导出
摘要 研究了分数阶混沌耦合广义投影同步及其在保密通信中的应用问题.提出了一种分数阶混沌系统耦合广义投影同步方案,基于分数阶系统稳定性理论,通过设计同步控制器,使得分数阶超混沌Chen系统达到了耦合广义投影同步;并结合混沌掩盖方法,通过引入可逆转换函数,设计了一种分数阶超混沌保密通信方案.数值仿真结果进一步验证了同步方法的有效性和保密通信方案的可行性. The problem of coupled generalized projective synchronization of the fractional-order chaotic systems and its application in secure communication is investigated in this paper. Firstly, a coupled generalized projective synchronization method for the fractional-order chaotic systems is proposed. Then, based on the stability theory of the fractional-order system, coupled projective synchronization of the fractional-order hyperchaotic Chen system is achieved through designing the controller. Finally, by combing with the chaotic masking method and employing the invertible functions for transforming the information signal, a fractional-order hyperchaotic secure communication scheme is presented. Corresponding simulation results further verify the effectiveness of the proposed synchronization method and the feasibility of the secure communication scheme.
作者 吕冰 朱长江
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2012年第3期302-308,共7页 Journal of Henan University:Natural Science
基金 国家自然科学基金(61004006) 河南省自然科学基金(112300410009) 河南省高等学校青年骨干教师资助计划(2011GGJS-025) 河南省教育厅自然科学研究计划资助项目(2011A520004)
关键词 分数阶混沌系统 超混沌Chen系统 耦合广义投影同步 混沌掩盖 fractional-order chaotic system hyperchaotic Chen system coupled generalized projective synchronization chaotic masking
  • 相关文献

参考文献17

  • 1B B Mandelbort. The fractal gemetry of nature[M]. New York: Freeman, 1983.
  • 2R Hirer. Applications of fractional calculus in physics[M]. New Jersey: World Scientific, 2001.
  • 3X J Wu, S L Shen. Chaos in the/ractional order Lorenz systemα International Journal of Computer Mathematics, 2009, 86(7) : 1274-1282.
  • 4T T Hartly, C F Lorenzo, H K Qammer. Chaos in a fractional order Chugs system[J]. IEEE Transactions on Circuits and Systems I, 1995, 42(8): 485-490.
  • 5C P Li, G J Peng. Chaos in Cheffs systems with a fractional order[J]. Chaos Solitons & Fractals, 2004, 22(2) : 443- 450.
  • 6X Wu, Y Lu. Generalized projective synchronization of the fractional-order Chen hyperchaotic system[J]. Nonlinear Dy namics, 2009, 57(1-2): 25-53.
  • 7C G Li, G Chen. Chaos and hyperchaos in the fractional order ROssler equations[J]. Physica A, 2004, 341: 55-61.
  • 8C G Li, X F Liao, J B Yu. Synchronization of fractional order chaotic systems[J]. Physical Review E, 2003, 68(6): 067203.
  • 9X Wu, H Lu, S Shen. Synchronization of a new fractional-order hyperchaotic system[J]. Physics Letters A, 2009, 373 (27-28) : 2329-2337.
  • 10P Zhou, W Zhu, Function projective synchronization for fractional-order chaotic systems[J]. Nonlinear Analysis: Real World Applications, 2011, 12(2): 811-816.

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部