摘要
研究预定数据链规模的单纯型连续近邻链(SCNNC)查询问题,基于Hilbert曲线,提出SCNNC_H_SS算法,将已处理过的数据点从数据集中进行剔除,可减少大量冗余计算。为对SCNNC进行动态维护和更新,提出SCNNC_H_CS算法。理论分析和实验结果表明,在数据集和待查近邻链的规模较大时,相比基于传统树索引结构的方法,该算法具有更高的查询效率。
This paper researches the Simple Continues Near Neighbor Chain(SCNNC) query with predestination data chain size,based on Hilbert curve,the SCNNC_H_SS algorithm is proposed.The redundant data information can be duly deleted and the number of the effective data point is decreased with operation of the algorithm.The redundant computation is avoided.To maintenance and update the SCNNC,the SCNNC_H_CS algorithm is given.Theatrical analysis and experimental results show that when the scale of data set and the chain are great,the algorithm is superior to the methods based on the tree index structure.
出处
《计算机工程》
CAS
CSCD
2012年第10期51-53,共3页
Computer Engineering
基金
国家自然科学基金资助项目(60673136
60903083)
哈尔滨理工大学青年科学研究基金资助项目(2011)
黑龙江省教育厅科学技术研究基金资助项目(11551084)
黑龙江省自然科学基金资助项目(F200702
F201134)