期刊文献+

基于DFP校正拟牛顿法的傅里叶神经网络 被引量:3

Fourier Neural Network Based on DFP Emendatory Quasi-Newton Method
下载PDF
导出
摘要 针对傅里叶神经网络采用最速下降法导致局部极小、学习速度慢以及泛化能力差的问题,提出一种基于DFP校正拟牛顿法的新学习算法。该算法计算复杂度低,能保证网络具有良好的泛化能力和全局最优性。通过2个数值算例检验该算法,同时和BP神经网络以及另外2种傅里叶神经网络作比较。结果表明,该算法计算复杂度约为最速下降法的5%,为最小二乘学习算法的80%,具有较好的泛化能力。 This paper proposes a novel Fourier Neural Network(FNN) based on DFP emendatory Quasi-Newton method in dealing with the problems of local minimum,slow learning rate and poor generalization ability of the FNN based on steepest descent method.The newly FNN has low computational complexity,good generalization ability and global optimization.Two numerical examples are utilized to validate the proposed learning algorithm by comparing with BP neural network and two kinds of FNNs.Numerical example results show that the computational complexity is 5% of the steepest descent method’s and 80% of the least squares method’s,and the new learning algorithm has good generalization capacity.
出处 《计算机工程》 CAS CSCD 2012年第10期144-147,共4页 Computer Engineering
基金 吉林省科技发展计划基金资助项目(2009148) 吉林省教育厅"十二五"科学技术研究基金资助项目(2011262)
关键词 傅里叶神经网络 BP神经网络 最速下降法 最小二乘法 拟牛顿法 DFP校正拟牛顿法 Fourier neural network BP neural network steepest descent method least squares method Quasi-Newton method DFP emendatory Quasi-Newton method
  • 相关文献

参考文献5

  • 1Cheng B,Titterington D M. Neural Networks-A Review from a Statistical Perspective[J].Statistical Science,1994,(01):2-30.
  • 2Barshan B,Ayrulu B. Fractional Fourier Transform Preprocessing for Neural Networks and Its Application to Object Recognition[J].Neural Networks,2002,(01):131-140.
  • 3Barto A G. A Neural Network Simulation Method Using the Fast Fourier Transform[J].IEEE Transactions on Systems Man and Cybernetics,1976,(12):863-867.
  • 4Zuo Wei,Zhu Yang,Cai Lilong. Fourier-neural-net work-based Learning Controlfor a Class of Nonlinear Systems with Flexible Components[J].IEEE Transactions on Neural Networks,2009,(01):139-151.
  • 5Osowski S,Nghia D D. Fourier and Wavelet Descriptors for Shape Recognition Using Neural Networks-A Comparative Study[J].Pattern Recognition,2002,(09):1949-1957.

同被引文献25

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部