摘要
普通最小二乘支持向量机算法用于多尺度回归建模时精度较低。针对该问题,选取墨西哥草帽小波函数作为最小二乘支持向量机的核函数,设计一种基于小波核的多尺度最小二乘小波支持向量机。在此基础上,通过解二次优化问题求出多尺度回归建模问题的全局最优解,最终得出的多尺度回归模型能够有效地逼近多尺度信号。仿真结果表明,该算法具有较高的精度。
Original Least Square Support Vector Machine(LSSVM) algorithm can not reach desired precision in multi-scale regression.To solve the problem,a multi-scale wavelet LSSVM algorithm is proposed by using a wavelet kernel.Mexican-hat wavelet function is used as the support vector kernel function,and the Least Square Wavelet Support Vector Machine(LS-WSVM) algorithm is presented.On this basis,the global optimum of the multi-scale regression modeling problem can be obtained by solving a quadratic programming problem.As a result,the regression model can effectively approximate multi-scale signals.Simulation results show that LS-WSVM is an efficient modeling method,and has high precision.
出处
《计算机工程》
CAS
CSCD
2012年第10期175-177,181,共4页
Computer Engineering
基金
国家"863"计划基金资助项目(2009AA05Z203)
关键词
多尺度
最小二乘
小波核
支持向量机
MARR核
回归建模
multi-scale
least square
wavelet kernel
Support Vector Machine(SVM)
MARR kernel
regression modeling