期刊文献+

多尺度最小二乘小波支持向量机的回归建模 被引量:4

Regression Modeling of Multi-scale Least Square Wavelet Support Vector Machine
下载PDF
导出
摘要 普通最小二乘支持向量机算法用于多尺度回归建模时精度较低。针对该问题,选取墨西哥草帽小波函数作为最小二乘支持向量机的核函数,设计一种基于小波核的多尺度最小二乘小波支持向量机。在此基础上,通过解二次优化问题求出多尺度回归建模问题的全局最优解,最终得出的多尺度回归模型能够有效地逼近多尺度信号。仿真结果表明,该算法具有较高的精度。 Original Least Square Support Vector Machine(LSSVM) algorithm can not reach desired precision in multi-scale regression.To solve the problem,a multi-scale wavelet LSSVM algorithm is proposed by using a wavelet kernel.Mexican-hat wavelet function is used as the support vector kernel function,and the Least Square Wavelet Support Vector Machine(LS-WSVM) algorithm is presented.On this basis,the global optimum of the multi-scale regression modeling problem can be obtained by solving a quadratic programming problem.As a result,the regression model can effectively approximate multi-scale signals.Simulation results show that LS-WSVM is an efficient modeling method,and has high precision.
出处 《计算机工程》 CAS CSCD 2012年第10期175-177,181,共4页 Computer Engineering
基金 国家"863"计划基金资助项目(2009AA05Z203)
关键词 多尺度 最小二乘 小波核 支持向量机 MARR核 回归建模 multi-scale least square wavelet kernel Support Vector Machine(SVM) MARR kernel regression modeling
  • 相关文献

参考文献10

  • 1Vapnik V N.The Nature of Statistical Learning Theory[M].New York,USA:Springer-Verlag,1995.
  • 2姚媛,胡根生,梁栋.基于小波支持向量机的遥感影像融合[J].计算机工程,2011,37(3):218-221. 被引量:4
  • 3Suykens J K,Vandewalle J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letter,1999,9(3):293-300.
  • 4Zhang Li,Zhou Weida,Jiao Licheng.Wavelet Support Vector Machine[J].IEEE Trans.on Systems,Man,and Cybernetics,Part B:Cybernetics,2004,34(1):34-39.
  • 5武方方,赵银亮.最小二乘Littlewood-Paley小波支持向量机[J].信息与控制,2005,34(5):604-609. 被引量:14
  • 6Michael A,Durrani T S.Framework for Multiscale and Hybrid RKHS-based Approximators[J].IEEE Trans.on Signal Processing,2000,48(12):3559-3567.
  • 7任世锦,吴铁军.基于径向基小波核的多尺度小波支持向量机[J].电路与系统学报,2008,13(4):70-76. 被引量:8
  • 8Mercer J.Functions of Positive and Negative Type and Their Connection with the Theory of Integral Equations[J].Philosophical Transactions of the Royal Society of London:A,1909,(209):415-446.
  • 9Smola A J,Sch(o)lkopf B,Müller K R.The Connection Between Regularization Operators and Support Vector Kernels[J].Neural Networks,1998,11(4):637-649.
  • 10Daubechies I.Orthonormal Bases of Compactly Supported Wavelets[J].Communications on Pure and Applied Mathematics,1988,41(7):909-996.

二级参考文献32

  • 1李元诚,方廷健.小波支持向量机[J].模式识别与人工智能,2004,17(2):167-172. 被引量:13
  • 2刘贵喜,赵曙光,陈文锦.红外与可见光图像融合的多分辨率方法[J].光电子.激光,2004,15(8):980-984. 被引量:24
  • 3林继鹏,刘君华.基于小波的支持向量机算法研究[J].西安交通大学学报,2005,39(8):816-819. 被引量:25
  • 4倪伟,郭宝龙,杨镠.基于Contourlet区域对比度的遥感图像融合算法(英文)[J].宇航学报,2007,28(2):364-369. 被引量:14
  • 5Do M N,Vetterli M.The Contourlet Transform:An Efficient Directional Multiresolution Image Representation[J].IEEE Trans.on Image Processing,2005,14(12):2091-2106.
  • 6Zhang Li,Zhou Weida,Jiao Licheng.Wavelet Support Vector Machine[J].IEEE Trans.on Systems,2004,34(1):34-39.
  • 7Smola A,Scholkopf B.A Tutorial on Support Vector Regression[R].Egham Hill,UK:Royal Holloway College,University of London,Tech.Rep.:NC-TR-98-030,1998.
  • 8Zheng Sheng,Shi Wenzhong,Liu Jian,et al.Remote Sensing Image Fusion Using Multiscale Mapped LS-SVM[J].IEEE Trans.on Geoscience and Remote Sensing,2008,46(5):1313-1322.
  • 9Vapnik V N. The Nature of Statistical Learning Theory [ M ].New York: Springer, 1995. 1~175.
  • 10Burges C J. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 955 ~974.

共引文献22

同被引文献36

引证文献4

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部