期刊文献+

融合局部图像信息的SLGS活动轮廓模型 被引量:1

SLGS Active Contour Model Fused with Local Image Information
下载PDF
导出
摘要 SLGS模型不能处理灰度不均图像,而RSF模型对初始轮廓较敏感。为此,将RSF模型定义的局部信息融入SLGS模型中,提出一个以偏微分方程形式表达的活动轮廓模型。利用SLGS模型全局拟合量和RSF模型局部拟合量的线性组合构造符号压力函数,调整拟合量的权重以提升模型对灰度不均图像的处理能力和轮廓初始化的灵活性,并利用高斯滤波正则水平集函数法实现水平集函数的正则化。实验结果表明,该模型的分割结果比SLGS模型更准确。 The SLGS model can not deal with intensity inhomogeneity,while the RSF model is sensitive to initialization.Incorporating the local information defined by the RSF model into the SLGS model,this paper proposes a novel active contour model in a partial differential equation formulation.A signed pressure force function is defined by a linear combination of the global fitting values defined by the SLGS model and the local fitting values defined by the RSF model.By choosing appropriately the parameter that controls the influence of the global and local fitting values,the proposed model can efficiently deal with intensity inhomogeneity and allows for the flexible initialization.Experimental results show that the proposed model is more accurate than the SLGS model.
出处 《计算机工程》 CAS CSCD 2012年第10期188-190,共3页 Computer Engineering
基金 重庆大学研究生科技创新基金资助项目(CDJXS11100045) 重庆市自然科学基金资助项目(CSTC 2010BB9218)
关键词 图像分割 水平集方法 活动轮廓模型 C-V模型 RSF模型 SLGS模型 灰度不均 image segmentation level set method active contour model C-V model RSF model SLGS model intensity inhomogeneity
  • 相关文献

参考文献6

  • 1Caselles V,Kimmel R. Sapiro G Geodesic Active Contours[J].International Journal of Computer Vision,1997,(01):61-79.
  • 2Zhu Guopu,Zhang Shuqunqun,Zeng Qingshuang. Boundary-based Image Segmentation Using Binary Level Set Method[J].Optical Engineering,2007.1-2.
  • 3Chan T F,Vese L A. Active Contours Without Edges[J].IEEE Transactions on Image Processing,2001,(02):266-277.
  • 4Zhang Kaihua,Zhang Lei,Song Hhuihui. Active Contours with Selective Local or Global Segmentation:A New Formulation and Level Set Method[J].Image and Vision Computing,2010,(04):668-676.
  • 5Li Chunming,Kao Chui-Yen,Gore J C. Minimization of Region-scalable Fitting Energy for Image Segmentation[J].IEEE Transactions on Image Processing,2008,(10):1940-1949.
  • 6Wang Xiaofeng,Huang Deshuang,Xu Huan. An Efficient Local Chan-Vese Model for Image Segmentation[J].Pattern Recognition,2010,(03):603-618.

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部