期刊文献+

基于权重粒子群优化阈值的NSCT图像去噪 被引量:6

NSCT Image Denoising Based on Weight Particle Swarm Optimization Threshold
下载PDF
导出
摘要 提出一种基于线性递减权重粒子群优化(LinWPSO)阈值的非下采样Contourlet变换(NSCT)图像去噪方法。在NSCT域通过LinWPSO对广义交叉验证风险函数寻优以确定最佳阈值,通过软阈值函数去噪,利用NSCT的平移不变性抑制伪Gibbs失真效应,从而完整保留图像的纹理和边缘等细节信息。实验结果表明,该方法能有效去除遥感图像的高斯噪声,提高图像的峰值信噪比。 A Nonsubsampled Contourlet Transform(NSCT) image denoising method based on Linear decreasing Weight Particle Swarm Optimization(LinWPSO) is proposed in this paper.This method acquires the optimal threshold of Generalized Cross Validation(GCV) risk function by using LinWPSO in the NSCT domain,and removes the noise through soft threshold function,which does not need the prior information of noise variance.Experimental results show that the proposed method can more effectively reduce Gauss noise in remote sensing image and improve the Peak Signal to Noise Ratio(PSNR) of the image.
出处 《计算机工程》 CAS CSCD 2012年第10期209-211,共3页 Computer Engineering
基金 科技部国际科技合作计划基金资助项目(2009DFA12870) 教育部促进与美大地区科研合作与高层次人才培养基金资助项目
关键词 图像去噪 软阈值 非下采样CONTOURLET变换 粒子群优化 平移不变性 广义交叉验证 image denoising soft threshold Nonsubsmapled Contourlet Transform(NSCT) Particle Swarm Optimization(PSO) shift invariance Generalized Cross Validation(GCV)
  • 相关文献

参考文献11

  • 1Po D Y,Do M N.Directional Multiscale Modeling of Images Using the Contourlet Transform[J].IEEE Trans.on Image Processing,2006,15(6):1610-1620.
  • 2Cunha A L,Zhou Jianping,Do M N.The Nonsubsampled Contourlet Transform:Theory,Design and Application[J].IEEE Transactions on Image Processing,2006,15(10):3089-3101.
  • 3Weyrich N,Warhola G T.Wavelet Shrinkage and Generalized Cross Validation for Image Denoising[J].IEEE Trans.on Image Processing,1998,7(1):82-90.
  • 4Hsung Tai-Chiu,Lun D P.Generalized Cross Validation for Multiwavelet Shrinkage[J].IEEE Signal Processing Letters,2004,11(6):549-552.
  • 5杨晓慧,焦李成,牛宏娟,王中晔.基于多阈值的非下采样轮廓波图像去噪方法[J].计算机工程,2010,36(4):200-201. 被引量:12
  • 6Donoho D L.De-noising by Soft-thresholding[J].IEEE Trans.on IT,1995,41(3):613-627.
  • 7Kennedy J,Eberhart R.Particle Swarm Optimization[C]//Proc.of IEEE International Conference on Neural Networks.Perth,Australia:IEEE Press,1995.
  • 8Coello C A,Pulido G T,Lechuga M S.Handling Multiple Objectives with Particle Swarm Optimization[J].IEEE Trans.on Evolutionary Computation,2004,8(3):256-279.
  • 9陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 10Sun Linli,Li Yah,Zheng Jianming.Image Denoising with Contourlet Transform Based on PCA[C]//Proc.of IEEE International Symposium on Computer Science and Computational Technology.Shanghai,China:[s.n.],2008.

二级参考文献33

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 2侯建华,田金文,柳健.小波域局部维纳滤波器估计误差分析及图像去噪[J].光子学报,2007,36(1):188-191. 被引量:15
  • 3林杰,孙淑霞,文武.基于粒子群优化算法的图像小波阈值去噪研究[J].计算机技术与发展,2007,17(4):204-207. 被引量:5
  • 4刘成云,陈振学,马于涛.自适应阈值的小波图像去噪[J].光电工程,2007,34(6):77-81. 被引量:45
  • 5Goodman J W. Some Fundamental Properties of Speckle[J]. Journal Optical Society America, 1976, 66(11): 11451150.
  • 6Achim A, Tsakalides P, Bezerianos A. SAR Image Denoising Via Bayesian Wavelet Shrinkage Based on Heavy-tailed Modeling[J]. IEEE Trans. on Geoscience and Remote Sensing, 2003, 41(8): 1773-1784.
  • 7Mirth N D, Vetterli M. The Contourlet Transform: An Efficient Directional Multisolution Image Representation[J]. IEEE Trans. on Image Processing, 2005, 14(12): 2091-2106.
  • 8Arthur L D C, Zhou Jianping, Minh N D. The Nonsubsampled Contourlet Transform: Theory, Design and Application[J]. IEEE Trans. on Image Processing, 2006, 15(10): 3089-3101.
  • 9Zhou Zuofeng, Shui Penglang. Contourlet-based Image Denoising Algorithm Using Directional Windows[J]. Electronics Letters, 2007, 43(2): 92-93.
  • 10Chang S G, Yu Bin, Vetterli M. Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising[C]// Proceedings of IEEE International Conference on Image Processing. [S, l.]: IEEE Press, 2000: 1522-1531.

共引文献323

同被引文献49

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部