摘要
提出一种基于线性递减权重粒子群优化(LinWPSO)阈值的非下采样Contourlet变换(NSCT)图像去噪方法。在NSCT域通过LinWPSO对广义交叉验证风险函数寻优以确定最佳阈值,通过软阈值函数去噪,利用NSCT的平移不变性抑制伪Gibbs失真效应,从而完整保留图像的纹理和边缘等细节信息。实验结果表明,该方法能有效去除遥感图像的高斯噪声,提高图像的峰值信噪比。
A Nonsubsampled Contourlet Transform(NSCT) image denoising method based on Linear decreasing Weight Particle Swarm Optimization(LinWPSO) is proposed in this paper.This method acquires the optimal threshold of Generalized Cross Validation(GCV) risk function by using LinWPSO in the NSCT domain,and removes the noise through soft threshold function,which does not need the prior information of noise variance.Experimental results show that the proposed method can more effectively reduce Gauss noise in remote sensing image and improve the Peak Signal to Noise Ratio(PSNR) of the image.
出处
《计算机工程》
CAS
CSCD
2012年第10期209-211,共3页
Computer Engineering
基金
科技部国际科技合作计划基金资助项目(2009DFA12870)
教育部促进与美大地区科研合作与高层次人才培养基金资助项目
关键词
图像去噪
软阈值
非下采样CONTOURLET变换
粒子群优化
平移不变性
广义交叉验证
image denoising
soft threshold
Nonsubsmapled Contourlet Transform(NSCT)
Particle Swarm Optimization(PSO)
shift invariance
Generalized Cross Validation(GCV)