期刊文献+

纤锌矿GaN/Al_xGa_(1-x)N量子阱中界面声子模对极化子能量的影响 被引量:2

Energy of a Polaron in Wurtzite GaN/Al_xGa_(1-x)N Quantum Well
下载PDF
导出
摘要 采用Lee-Low-Pines变分法研究了纤锌矿GaN/AlxGa1-xN量子阱中极化子能量和电子-声子相互作用对极化子能量的影响.理论计算中考虑了定域体声子模和界面声子模的作用,同时考虑了它们的各向异性.给出极化子基态能量、第1激发态能量、跃迁能量(第1激发态到基态),以及电子-声子相互作用对能量的贡献随量子阱宽度和深度(组分)变化的数值结果.为了定性分析和对比还给出了闪锌矿量子阱中的相对应结果.计算结果表明:阱宽较小时界面声子对极化子能量的贡献大于定域声子,阱宽较大时界面声子的贡献小于定域声子.纤锌矿结构中声子对能量的贡献大于闪锌矿结构中的相应值.GaN/AlxGa1-xN量子阱中声子对能量的贡献比GaAs/AlxGa1-xAs量子阱中的相应值大得多,当阱宽为20nm时,电子-声子相互作用能分别约等于-35,-2.5 meV. Energy of polaron and effects of electron-phonon interaction in wurtzite GaN/AlxGa1-xN quantum well is investigated by using modified LLP variational method.The confined phonon modes,interface phonon modes,and their anistropy are considered.The ground state energy,the excited state energy,the transition energy of polaron,and the contribution of the electron-phonon interaction to the energy with the well width and composition are calculated.In order to compare,the corresponding results in zinc-blende quantum well are given.The results show that the contribution of interface phonon modes to polaron energy are larger than that of the confined modes for narrow wells,and the contribution of the confined modes to polaron energy are larger than that of the contribution of the interface phonon modes for width wells.The contribution of the electron-phonon interaction to the energy of polaron in wurtzite quantum well is larger than that of in zinc-blende quantum well.The contribution of electronphonon interaction to the energy of polaron in GaN/AlxGa1-xN quantum well is much larger than that in GaAs/AlxGa1-xAs quantum well.For example,when the well width is 20 nm,the electron-phonon interaction energy is about-35 meV and-2.5 meV.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2012年第3期251-256,共6页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(10964007) 内蒙古自治区自然科学基金(2009MS0110)
关键词 纤锌矿 电子-声子相互作用 极化子 能量 wurtzite quantum well electron-phonon interaction polaron energy
  • 相关文献

参考文献21

  • 1PONCE F A, BOUR D P. Nitride-based Semiconductors for Blue and Green Light-emitting Devices [J]. Nature, 1997,386 (27) :351-359.
  • 2MALYUTENKO V K, BOLGOV S S, PODOLTSEV A D. Current Crowding Effect on the ldeality Factor and Efficiency Droop in Blue Lateral InGaN/GaN Light Emitting Diodes [J] .Appl Phys Lett,2010,97(25):251110.
  • 3LEE W,KIM M H, ZHU D J. Growth and Characteristics of GalnN/GalnN Multiple Quantum Well Light-emitting Diodes [J] .Appl Phys,2010,107(6) :063102.
  • 4ZHAO H,TANSU N J. Optical Gain Characteristics of Staggered InGaN Quantum Wells Lasers [J]. Appl Phys,2010,107 (11):113110.
  • 5YOSHIDA H, KUWABARA M, YAMASHITA Y, et al. Radiative and Nonradiative Recombination in an Ultraviolet GaN/AI- GaN Multiple-quantum-well Laser Diode [J]. Appl Phys Lett,2010,96(21):211122.
  • 6叶良修.半导体物理学[M].北京:高等教育出版社,2007.
  • 7LEE T D, LOW F E,PINES D. The Motion of Electric in a Polar Crystal [J ]. Phys Rev, 1953,90 (2) :297-302.
  • 8LEE B C, KIM K V, STROSCIO M A, et al. Electron-optical-phonon Scattering in Wurtzite Crystals [J ]. Phys Rev B, 1997,56 (3):997.
  • 9SHI J J. Interface Optieal-phonon Modes and Electron-interfaee-phonon Interaetionsion Wurtzite GaN/AIN Quantum Wells [J ]. Phys Rev B,2003,68(16) : 165335.
  • 10ZHANG L, SHI J J, TANSLEY T L. Polar Vibration Spectra of Interface Optical Phonons and Electron-interface Optical Phonon Interactions in a Wurtzite GaN-AIN Nanowire [ J ]. Phys Rev B, 1987,36 (8) : 4359-4374.

二级参考文献45

共引文献24

同被引文献20

  • 1刘红霞,周圣明,李抒智,杭寅,徐军,顾书林,张荣.柱状ZnO阵列薄膜的生长及其发光特性[J].物理学报,2006,55(3):1398-1401. 被引量:24
  • 2靳锡联,娄世云,孔德国,李蕴才,杜祖亮.Mg掺杂ZnO所致的禁带宽度增大现象研究[J].物理学报,2006,55(9):4809-4815. 被引量:58
  • 3Gruber T,Kirchner C,Kling R, et al. ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic apphcatlons m the blue and UV spectral region [J]. ApplPhys Lett,2004,84(26)~5359-5361.
  • 4Nomura K, Ohta H,Ueda K,et al. Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semicondu- ctor [J]. Science,2003,300(5623) :1269-1272.
  • 5Ozgur U,Alivov Y I,Liu C,et al. A comprehensive review of ZnO materials and devices [J]. Appl Phys,2005,98(4).. 041301-041301-103.
  • 6Bagnall D M,Chen Y F,Zhu Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers [J]. Appl Phys I.ett, 1998,73(8) : 1038-104.
  • 7Lee B C, Kim K V,Stroscio M A. Electron-optical-phonon scattering in wurtzite crystals [J]. Phys Rev B, 1997,56 (3) : 997-1000.
  • 8Bikowski A, Ellmer K. Electrical transport in hydrogen-aluminium Co-doped ZnO and Znl-xMg~O films: Relation to film structure and composition [J]. J Appl Phys, 2013,113 (5) : 053710-053710-6.
  • 9Makino T,Tuan N T,Sun H D,et al. Temperature dependence of near ultraviolet photoluminescence in ZnO/(Mg,Zn) O multiple quantum wells [J]. Appl Phys Lett,2001,78(14):1979-1981.
  • 10Bretagnon T, Lefebvre P, Guillet T, et al. Barrier composition dependence of the internal electric field in ZnO/ Znl ~MgxO quantum wells [J]. Appl Phys Lett,2007,90(20):201912-201914.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部