期刊文献+

基于小波变换的列车广播声压自适应调整算法 被引量:1

Self-adaptive Algorithm Based on Wavelet transform for Sound Pressure Level of the Broadcasting in Train
下载PDF
导出
摘要 随着社会交通水平的日益提高,对列车广播质量与稳定性要求也越来越高。列车噪声包括列车的振动噪声与乘客的语音噪声,由于乘客语音噪声特性与广播本身类似,因此在该噪声背景下采用传统信号处理方法进行去噪遇到很大困难。采用改进的自适应小波滤波器,对列车广播时的实际环境所采集的信号进行小波分解与重构,然后用一个以人耳主观舒适度为基础的SVM声功率参考模型,再通过前一时刻的广播、噪声声压级来修正当前时刻的广播声压级,在列车环境下达到了良好的语音去噪效果。 With the development of transporting, the requirement for the sound quality of the broadcasting in train be- comes more and more sophisticated. It is difficult to derive the voice of broadcasting from the background noise, due to the noise combined with the floor mechanical noise from the train and the voice from the passengers, of which acoustical charac- teristics are similar to the one from the broadcasting. Thus, a self - adaptive algorithm based on Wavelet transform according to the human auditory characteristics, for sound pressure level of the train broadcasting is introduced in this paper. By means of the wavelet transform and time - frequency analysis for the background noise and a SVM model from the subjective aural assessments, the current dynamical, self - adaptive and optimal sound pressure level for the broadcasting are depended on the last adjacent background noise sample. According to the computer simulation and a rough implement on the train, this algorithm results in a good control for the SPL, compared to the other common methods, but a practical time - fast version of the algorithm is still needed a further study.
作者 张健 邓志勇
出处 《电声技术》 2012年第5期85-88,92,共5页 Audio Engineering
基金 中国电子科技集团第三研究所"列车广播工程技术"专项基金资助项目
关键词 小波变换 列车广播 语音噪声 自适应 wavelet transform train broadcasting voice noise self - adaptive
  • 相关文献

参考文献6

  • 1WALDO N, ANDREAS B, ANDREAS B. Wavelet packet fiherbank for speech processing strategies in cochlear implants[ C ]//Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP. [ S. l. ] : IEEE Press, 2006,5(5) :121 - 124.
  • 2RASETSHWANE D M, BOSTON J R, DURRANT J D, et al. Speech enhancement by combination of transient emphasis and noise cancelation[ C ]//Proc. Digital Signal Processing Work-shop and IEEE Signal Processing Education Workshop (DSP/ SPE). Sedona, AZ:IEEE Press, 2011 : 116 - 121.
  • 3HASSANI M, MOLLAEI M R K. Speech enhancement based on spectral subtraction in wavelet domain [C]//Proc. Signal Processing and its Applications (CSPA) ,2011 IEEE 7th International Colloquium on. [S. l. ] :IEEE Press, 2011:366 -370.
  • 4ROMANYSHYN Y, TKACHENKO V. Noise reducing in speech signals using wavelet technology [ C ]//Proc. CAD Systems in Microelectronics ( CADSM), 2011 11th International Conference. [S. l. ] :IEEE Press, 2011: 446.
  • 5LUN D P K, HSUNG T C. Improved wavelet based a - priori SNR estimation for speech enhancement [ C ]//Proc. Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on. [S. l. ] :IEEE Press, 2010:2382 -2385.
  • 6王继曾,王婵飞.基于小波变换的自适应语音盲分离新算法[J].电声技术,2008,32(5):54-56. 被引量:1

二级参考文献8

  • 1王晓娣.多带谱相减结合感觉加权的语音增强方法研究[J].电力系统通信,2005,26(12):50-53. 被引量:6
  • 2孙延奎.小波分析及其应用[M].北京:机械工业出版社,2004.
  • 3STARCK J,CANDES E J,DONOHO D.The curvelet transform for image denoising[J].IEEE Trans.on Image Processing,2002,11(6):670-684.
  • 4SENDUR L,SELESMCK L W.Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J].IEEE Trans.on Signal Processing,2002,47(11):2744-2756.
  • 5WANG X.Nonlinear multi2wavelet transform based soft thresholding[C]// Proceedings of IEEE APCCAS.Tianjin:IEEE Press,2000:775-778.
  • 6ERDOGMUS D,RAO Y N,PRICIPLE J C.Simultaneos extraction of pricinple components using givens rotations and outputvariances[C]// Proceedings of IEEE International Conferance on Acoustics,Speech,and Signal Processing.Orlando:IEEE Press,2002,1:121069-121072.
  • 7沈亚强,金洪震,刘旭.基于子波变换的语音去噪方法[J].信号处理,2000,16(3):221-226. 被引量:19
  • 8张磊,潘泉,张洪才,戴冠中.小波域滤波阈值参数c的选取[J].电子学报,2001,29(3):400-402. 被引量:64

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部