期刊文献+

极端U_1矩阵的结构与计数

Construction and counting of extreme U_1 matrices
下载PDF
导出
摘要 相关文献在研究单纯形上的双随机算子和极端双随机算子的充要条件时,成功地利用U1矩阵和极端U1矩阵的工具,取得丰硕成果.其在给出U1矩阵是极端U1矩阵的必要条件基础上,进一步给出U1矩阵是极端U1矩阵的充要条件及对称非负矩阵是极端U1矩阵的充要条件.论文继续深入研究极端U1矩阵的性质,包括其直和结构、置换相似类个数的计算和谱半径估计,并对相关文献提出的猜想给出肯定性的证明. Some reference uses U 1 and extreme U1 matrices to investigate the necessary and sufficient condition for a quadratic operator defined on the simplex to be a quadratic stochastic operator or an extreme quadratic stochastic operator. Other reference presented a necessary and sufficient condition for a U1 matrix to be an extreme U1 matrix ( other reference only presented the necessary condition ) , and a necessary and sufficient condition for a symmetric nonnegative matrix was an extreme U1 matrix. In this paper, we continued to investigate extreme U1 matrices including the structure of an extreme U1 matrix , counted the number of n × n extreme U1 matrices and computed the spectral radius of an n × n extreme U1 matrix. Finally we proved the conjecture given in other articles.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2012年第3期1-7,共7页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(10871230)
关键词 不可约矩阵 谱半径 极端U1矩阵 矩阵的直和 正交矩阵 irreducible matrices the spectral radius extreme U1 matrices direct sum of matrices orthogonal matrices
  • 相关文献

参考文献11

  • 1杨尚俊,李红粉,张洋,王刚.极端U_1矩阵的充要条件[J].安徽大学学报(自然科学版),2011,35(5):1-5. 被引量:2
  • 2Ganikhodzhaev R, Shahidi F. Doubly stochastic quadratic operators and Birkhoff' s problem[ J]. Linear Algebra and Appl,20i0,432:24-35.
  • 3Berman G A, Plemmons R J. Nonnegative matrices in the mathematics science[ M ]. New York: Academic Press, 1979.
  • 4Horn R A, Johnson C R. Matrix analysis[ M ]. Washington : Cambridge University Press, 1985.
  • 5Shahidi A. On extrem epoints of the set of doubly stochastic operators [ J ]. Math Notes ,2008,84:442-448.
  • 6Shahidi F. On dissipative quadratic stochastic operators [ j ]. Appl Math Inform Sci ,2008 (2) :211-223.
  • 7Mukhamedov H, Temir S. On infinite dimensional quadratic Volterra operators [ J ]. Math Anal Appl,2005,310:533- 556.
  • 8Otter R. The number of trees [ J ]. Ann Math, 1948,49 : 583-599.
  • 9Birkhoff A. Three observations on linear algebra[ J]. Rev Univ Nac Tucuman Ser A, 1946(5):147-151.
  • 10杨尚俊.行随机矩阵的逆特征值问题[J].安徽大学学报(自然科学版),2010,34(3):1-4. 被引量:5

二级参考文献8

  • 1Egleston P,Lanker T,Narayan S.The nonnegative inverse eigenvalue problem[J].Linear Algebra Appl,2004,379:475-490.
  • 2Soto R.Existence and construction of nonnegative matrices with prescribed spectrum[J].Linear Algebra Appl,2003,369:844-856.
  • 3Soto R,Rojo O.Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem[J].Linear Algebra Appl,2006,416:169-184.
  • 4Yang S,Li X.Inverse eigenvalue problems of 4×4 irreducible nonnegative matrices,Volume I,Advances in Matrix Theory and Applications[C].The proceedings of the Eighth International Conference on Matrix Theory and Applications,World Academic Union,2008.
  • 5Yang Shangjun,Li Xiaoxin.Algorithms for determining the copositivity of a given symmetric matrix[J].Linear Algebra Appl,2009,430:609-618.
  • 6杨尚俊,杜吉佩.不可约非负矩阵的逆特征值问题[J].安徽大学学报(自然科学版),2008,32(5):1-4. 被引量:2
  • 7杨尚俊.四阶不可约非负矩阵的逆特征?问题[J].安徽大学学报(自然科学版),2009,33(4):1-4. 被引量:4
  • 8杨尚俊.行随机矩阵的逆特征值问题[J].安徽大学学报(自然科学版),2010,34(3):1-4. 被引量:5

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部