期刊文献+

基于不同非共线结构的光参量放大器的带宽特性研究 被引量:3

Bandwidth Investigation of Optical Parametric Amplifier in Different Noncollinear Geometries
原文传递
导出
摘要 研究了多种非共线结构下基于周期极化铌酸锂晶体的皮秒脉冲光参量放大器的调谐带宽和参量带宽特性,确定了当能够获得大且稳定的调谐带宽时应使用的最佳非共线结构、抽运光波矢和晶体光栅矢量间的最佳非共线角θ以及最佳极化周期,同时给出了用于计算不同温度下周期极化铌酸锂晶体的最佳极化周期的数学公式。此外,通过对相位失配进行泰勒级数展开,分别得到了保留一阶、二阶和三阶导数项时的参量带宽计算公式,随后将利用这些公式和相位失配表达式计算得到的参量带宽进行了对比,进而分析了高阶导数项对参量带宽的影响。在此基础上提出了一个用于最大化光参量放大过程的调谐带宽和参量带宽、确定非共线角α和工作温度等最佳工作参数的可行方案。 The tunable bandwidth and the parametric bandwidth of periodically poled LiNbO3 (PPLN) based on picosecond optical parametric amplifier with different noncollinear geometries are investigated theoretically and numerically. By utilizing an noncollinear geometry recommended by ourself and setting both the noncollinear angle between the wave vectors of the pump and the quasi-phase-matching grating and the grating period of PPLN at optimal values, broad and stable tunable bandwidth can be obtained. An expression is proposed to calculate the optimal grating period for PPLN. By expanding the wave-vector mismatch in a Taylor series and retaining terms through first order, second order and third order, respectively, three equations are presented to determine the parametric bandwidth. The results calculated from these equations are analyzed and compared with that calculation by employing the wave-vector mismatch directly, and then the effect of high order series on the parametric bandwidth is studied. At the end, a feasible scheme is presented to determine the working temperature and noncollinear angle a, maximize the tunable bandwidth and parametric bandwidth, and simplify the experimental operation.
出处 《中国激光》 EI CAS CSCD 北大核心 2012年第5期59-67,共9页 Chinese Journal of Lasers
基金 中央高校基本科研业务费专项资金(09QG09)资助课题
关键词 非线性光学 带宽 准相位匹配 光参量放大 nonlinear optics bandwidth quasi-phase-matching optical parametric amplification
  • 相关文献

参考文献17

二级参考文献52

共引文献19

同被引文献43

  • 1彭翰生.超强固体激光及其在前沿学科中的应用(1)[J].中国激光,2006,33(6):721-729. 被引量:29
  • 2Dubietis A, Butkus R, Piskarskas A P. Trends in chirped pulse optical parametric amplification[J]. IEEE J Sel Top Quantum Electron, 2006, 12(2), 163-172.
  • 3Schimpf D N, Rothhardt J, Limpert J, et al. Theoretical analysis of the gain bandwidth for noncollinear parametric amplification of ultrafast pulses[J]. J Opt Soc Am B, 2007, 24 (11): 2837-2846.
  • 4Ross I N, Matousek P, New G H C, eta&. Analysis and optimization of optical parametric chirped pulse amplification[J]. J Opt Soc Am B, 2002, 19(12) : 2945-2956.
  • 5Cerullo G, Silvestri S D. Ultrafast optical parametric amplifiers[J]. RevScient Instrum, 2003, 74(1): 1-18.
  • 6Lozhkarev V, Freidman G, Ginzburg V, et al. Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd: YLF laser[J]. Laser Phys, 2005, 15(9): 1319.
  • 7Dabu R. Very broad gain bandwidth parametric amplification in nonlinear crystals at critical wavelength degeneracy [J ]. Opt Express, 2010, 18(11): 11689-11699.
  • 8Witte S, Eikema K S. Ultrafast optical parametric chirped-pulse amplification[J]. IEEE J Sel Top Quant Electron, 2012, 18(1) : 296- 307.
  • 9Herrmann D, Tautz R, Tavella F, et al. Investigation of two beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses[J]. Opt Express, 2010, 18(5): 4170-4183.
  • 10Zeromskis E, Dubietis A, Tamogauskas G, et al. Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams[J]. Opt Commun, 2002,203(3) : 435-440.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部