期刊文献+

一类捕食-食饵模型的共存性

Coexistence in a predator-prey model
下载PDF
导出
摘要 研究了一类具有一般形式反应函数的捕食-食饵模型的正解.给出了正解的先验估计,利用不动点指标原理讨论了正解的存在性.通过计算degW′(I-F,D)、indexW′(F,(0,0))和indexW′(F,(θ,0)),得出食饵和捕食者可以共存当且仅当捕食者的死亡率c控制在下限-d2λ0和上限-λ1(d2,-efv(θ,0))之间,且食饵的固有增长率超过d1λ0. The positive solutions are investigated for a predator-prey model with general functional response. A priori estimation to the positive solutions of the model is given, and the fixed point index theory is utilized for discussing the existence of the positive solutions. By calculating degw,(I-F,D),indexw,(F,(0,0)) and indexw, (F, (0, 0)) , we obtain that predator and prey coexist if and only if predator's death rate c is controlled between the lower limit -d2λ0 and the upper limit -λ1 (d2,-efv(θ,0)), and prey's inherent growth rate is lager than d1λ0.
作者 刘娜 聂华
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期12-15,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11126201 11001160) 陕西省自然科学基础研究计划项目(2009JQ1007)
关键词 捕食-食饵 正解 不动点指标原理 predator-prey positive solution fixed point index principle
  • 相关文献

参考文献8

  • 1Jia Yunfeng. A sufficient and necessary condition for the existence of positive solutions for a prey-predator system withlvlev-type functional response[J]. Applied Mathe- matics Letters, 2011, 24:1084-1088.
  • 2Zhou Jun, Mu Chunlai. Coexistence states of a Holling type-Ⅱ predator-prey system[J]. Journal of Mathemati- cal Analysis and Applications, 2010, 369; 555-563.
  • 3郭改慧,吴建华.一类具有扩散的捕食-食饵模型正解的存在性和惟一性[J].数学物理学报(A辑),2011,31(1):196-205. 被引量:1
  • 4Ko W, Ryu K. A qualitative study on general Gause- type predator-prey models with non-monotonic function- al response[J]. Nonlinear Analysis, 2009, 10: 2558-2573.
  • 5Chen Wenyan. Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion[J]. Mathematical and Computer Model- ling, 2005, 42:31-44.
  • 6李景荣,李艳玲,闫焱.一类带交叉扩散项的捕食模型正解的存在性[J].陕西师范大学学报(自然科学版),2009,37(1):20-24. 被引量:4
  • 7Amann H. Fixed point equations and nonlinear eigenval- ue problems in ordered Banach spaces[J]. Journals of the Society for Industrial and Applied Mathematics, 1976, 18:620-709.
  • 8Li L. Coexistence theorems ofsteady states for preda- tor-prey interacting systems[J]. Transactions of the A- merican Mathematical Society, 1988, 305 : 143-166.

二级参考文献16

  • 1郑秋红,李艳玲.一类带饱和项互惠模型平衡态正解的存在性[J].陕西师范大学学报(自然科学版),2006,34(3):14-18. 被引量:2
  • 2曾宪忠,周树清.带有交叉扩散的捕食模型的非常数正稳态解的存在性[J].应用数学学报,2006,29(6):1063-1079. 被引量:3
  • 3叶其孝.反应扩散方程引论[M].北京:科学出版社,1994..
  • 4Dimitrov D T,Kojouharov H V.Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis functional response.Appl Math Comput,2005,162(2):523-538.
  • 5Blat J,Brown K J.Global bifurcation of positive solutions in some systems of elliptic equations.SIAM J Math Anal,1986,17(6):1339-1353.
  • 6López-Gómez J,Pardo R.Existence and uniqueness of coexistence states for the predator-prey Lotka-Volterra model with diffusion on intervals.Differential Integral Equations,1993,6(5):1025-1031.
  • 7Guo G H,Wu J H.Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response.Nonlinear Analysis TMA,2010,72:1632-1646.
  • 8Chen W Y,Wang M X.Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion.Mathematical and Computer Modelling,2005,42:31-44.
  • 9Smoller J.Shock Waves and Reaction-diffusion Equations.New York:Springer-Verlag,1999:167-180.
  • 10Cantrell R S,Cosner C.On the steady-state problem for the Lotka-Volterra competition model with diffusion.Houston J math,1987,13(3):337-352.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部