期刊文献+

复合泛函方程的稳定性

Stability of composition functional equation
下载PDF
导出
摘要 研究了复合泛函方程T(T(x)-T(y))=T(x+y)+T(x-y)-T(x)-T(y)在泛函Φ(x,y)限制下的稳定性问题.证明了:若E为Banach空间,泛函Φ:E×E→[0,∞)连续使得级数Φ(x)d=sum (2-j-1Φ(2jx,2jx)) from j=1 to ∞在E的任一有界子集上一致收敛,F:E→E是连续映射且满足‖F(F(x)-F(y))-F(x+y)-F(x-y)+F(x)+F(y)‖≤Φ(x,y)(■x、y∈E),则存在唯一的连续2-齐次映射T:E→E满足以上复合泛函方程且‖T(x)-F(x)‖≤Φ(x),■x∈E. The stability of the composition functional equation T(T(x)- T(y)) = T(xq-y)+T(x -y) -T(x) --T(y) with a controlling function φ(x,y) is discussed in this paper. It is proved that if E is a Banach spaces,φ:E×E→[0,∞)is continuous and such that the series φ(x)d= ∞∑=12-j-1φ(2jx,2jx)is uniformly convergent on every bounded subste of E,and F:E→E is a continuous mapping satisfying ||F(F(x)-F(y)-F(x+y)-F(x-y)+F9x)+F(y)||≤φ(x,y)( x,y∈E).Then there exists aunique 2-homogeneous continuous mapping T:E→E such that x.∈E,F(F(x)-f(y)-F(x+y)-F(x-y)+F(x)+F(y)=0,||T(x)-F(x)||≤φ(x)
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期16-19,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10571113 10871224) 陕西铁路工程职业技术学院科研项目(2011-41)
关键词 稳定性 复合泛函方程 幂等映射 连续性 stability composition functional equation idempotent mapping continuity
  • 相关文献

参考文献11

二级参考文献57

  • 1韩茂安,王成文.两类三次系统的全局分析[J].高校应用数学学报(A辑),1993(1):36-44. 被引量:2
  • 2陈芳跃.高次退化的非线性向量场分支[J].应用数学学报,1995,18(1):8-15. 被引量:8
  • 3Ulam S. M., A Collection of the Mathematical Problems, New York: Interscience Publ., 1960.
  • 4Hyers D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA., 1941, 27: 22-224.
  • 5Rassias T. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 114: 297-300.
  • 6Baker J., The stability of the cosine equation, Proc. Amer. Math. Soc., 1979, 74:242-246.
  • 7Gajda Z., On stabiolity of additive mapppings, Int. J. Math. Sci., 1991, 14: 431-434.
  • 8Rassias T. M., Semerl P., On the behavior of mappings which do not satisfy Hyers Ulam stability, Proc. Amer. Math. Soc., 1992, 114: 989-993.
  • 9Rassias T. M., Semrl P., On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 1992, 114:989-993.
  • 10Gavruta P., A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Appl., 1994, 184: 431-436.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部