期刊文献+

LOWER BOUNDS ESTIMATE FOR THE BLOW-UP TIME OF A NONLINEAR NONLOCAL POROUS MEDIUM EQUATION 被引量:20

LOWER BOUNDS ESTIMATE FOR THE BLOW-UP TIME OF A NONLINEAR NONLOCAL POROUS MEDIUM EQUATION
下载PDF
导出
摘要 The lower bounds for the blow-up time of blow-up solutions to the nonlinear nolocal porous equation ut=△u^m+u^p∫Ωu^qdxwith either null Dirichlet boundary condition or homogeneous Neumann boundary condi- tion is given in this article by using a differential inequality technique. The lower bounds for the blow-up time of blow-up solutions to the nonlinear nolocal porous equation ut=△u^m+u^p∫Ωu^qdxwith either null Dirichlet boundary condition or homogeneous Neumann boundary condi- tion is given in this article by using a differential inequality technique.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第3期1206-1212,共7页 数学物理学报(B辑英文版)
基金 supported by the Fundamental Research Funds for the Central Universities (CDJXS 11 10 00 19) Mu Chunlai is supported by NSF of China(11071266)
关键词 Lower bounds blow-up time Dirichlet boundary condition Neumann boundary condition Lower bounds blow-up time Dirichlet boundary condition Neumann boundary condition
  • 相关文献

参考文献1

二级参考文献1

共引文献6

同被引文献49

  • 1穆春来,胡学刚,李玉环,崔泽键.BLOW-UP AND GLOBAL EXISTENCE FOR A COUPLED SYSTEM OF DEGENERATE PARABOLIC EQUATIONS IN A BOUNDED DOMAIN[J].Acta Mathematica Scientia,2007,27(1):92-106. 被引量:7
  • 2Bebernes J, Eberly D. Mathematical Problems from CombustionTheory [M]. New York: SpringerVerlag,1989.
  • 3Wu Z,Zhao J, Yin J,et al. Nonlinear Diffusion Equations [M].Singapore: World Scientific, 2001.
  • 4Filo J. Diffusivity versus absorption through the boundary [J]. JDifferential Equations, 1992,99: 281-305.
  • 5Levine H A. The role of critical exponents in blow-up theorems[J], SIAM Rev, 1990,32: 262-288.
  • 6Samarskii A A, Kurdyumov S P, Galaktionov V A, et al. Blow-upin Problems for Quasilinear Parabolic Equations [M], Moscow:Nauka,-1987, Berlin: Walter de Gruyter, 1995.
  • 7Levine H A. Nonexistence of global weak solutions to some prop-erly and improperly posed problems of mathematical physics: Themethod of unbounded fourier coefficients [J]. Math Ann, 1975,214: 205-220.
  • 8Gao X,Ding J, Guo B Z. Blow-up and global solutions for qusilin-ear parabolic equations with neumann boundary conditions [J].Applicable Analysis, 2009,88: 183-191.
  • 9Song J C. Lower bounds for the blow-up time in a non-local reac-tion-diffusion problem [J]. Applied Mathematics Letters, 2011,24: 793-796.
  • 10Fang Z B,Yang R,Chai Y. Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and innerabsorption [J]. Math Probl Eng, 2014, 42; ID764248: 6.

引证文献20

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部