期刊文献+

ON THE KHLER-RICCI SOLITONS WITH VANISHING BOCHNER-WEYL TENSOR 被引量:3

ON THE KHLER-RICCI SOLITONS WITH VANISHING BOCHNER-WEYL TENSOR
下载PDF
导出
摘要 In this article, we study the steady, shrinking, and expanding Kahler-Ricci solitons with vanishing Bochner-Weyl tensor and prove that, under this condition, the Ricci solitons must have constant holomorphic sectional curvature. In this article, we study the steady, shrinking, and expanding Kahler-Ricci solitons with vanishing Bochner-Weyl tensor and prove that, under this condition, the Ricci solitons must have constant holomorphic sectional curvature.
作者 苏延辉 张坤
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第3期1239-1244,共6页 数学物理学报(B辑英文版)
基金 supported by the National Natural Science Foundation of China under the grant numbers 11126073 the Fundamental Research Funds for the Central Universities of SCUT under the grant number 2012ZB0017
关键词 Ricci flow Kahler Ricci soliton Bochner-Weyl tensor Ricci flow Kahler Ricci soliton Bochner-Weyl tensor
  • 相关文献

参考文献20

  • 1Besse A. Einstein Manifolds. Berlin: Springer-Verlag, 1987.
  • 2Bochner S. Curvature and Betti numbers. Ⅱ. Ann of Math, 1949, 50:77-93.
  • 3Brendle S. Uniqueness of gradient Ricci soliton, arxiv:1010.3684vl, 2010.
  • 4Bryant R L. Ricci flow solitons in dimension three with SO(3)-symmetries lOLl. http://www.math.duke. edu/-bryant/3DRot SymRicciSolitons.pdf.
  • 5Bryant R L. Gradient Kahler-Ricci solitons. Asterisque, 2008, 321:51-97.
  • 6Cao H D. Existence of gradient K~hler-Ricci solitons//Elliptic and Parabolic Methods in Geometry, 1994: 1-16.
  • 7Cao H D. Limits of solutions to the K~ihler-Ricci flow. J Diff Geom, 1997, 45:257-272.
  • 8Cao H D. Recent progress on Ricci solitons. Adv Lect Math (ALM), 2010, 11:1-38.
  • 9Cao H D, Chen Q. On locally conformally fiat gradient steady Ricci solitons. Trant Amer Math Soc, 2012, 364:2377-2391.
  • 10Cao H D, Hamilton R S. Gradient KEhler-Ricci soliton and periodic orbits. Comm Anal Geom, 2000, 8(3): 517-529.

同被引文献3

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部