期刊文献+

LITTLEWOOD-PALEY THEOREM AND MULTIPLIERS ON THE QUANTUM TORUS

LITTLEWOOD-PALEY THEOREM AND MULTIPLIERS ON THE QUANTUM TORUS
下载PDF
导出
摘要 The Littlewood-Paley and Marcinkiewicz's multiplier theorems on the quan- tum torus are established. An key ingredient of the proof is vector-valued Littlewood-Paley and noncommutative Khinchin's inequalities. The Littlewood-Paley and Marcinkiewicz's multiplier theorems on the quan- tum torus are established. An key ingredient of the proof is vector-valued Littlewood-Paley and noncommutative Khinchin's inequalities.
作者 陈泽乾 尹智
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第3期1255-1261,共7页 数学物理学报(B辑英文版)
基金 supported in part by NSFC No.11171338
关键词 Quantum torus Fourier series Littlewood-Paley theory MULTIPLIERS Quantum torus Fourier series Littlewood-Paley theory multipliers
  • 相关文献

参考文献1

二级参考文献21

  • 1] Arveson W B. Analyticity in operator algebra. Amer J Math, 1967, 89:578~642.
  • 2Bekjan T N, Xu Q. Riesz and Szeg5 type factorizations for noncommutative Hardy spaces. J Oper Theory, 2009, 62(1): 215-231.
  • 3Blecher D P, Labuschagne L E. Characterizations of noncommutative H∞. Integr Equ Oper Theory, 2006, 56:301-321.
  • 4Blecher D P, Labuschagne L E. Applications of the Fuglede-Kadison determinant: Szego's theorem and outers for noncommutative Hp. Trans Amer Math Soc, 2008, 360(11): 6131-6147.
  • 5Blecher D P, Labuschagne L E. A Beuring theorem for noncommutative L^p. J Oper Theory, 2008, 59(1): 29-51.
  • 6Chen Z. Hardy spaces of operator-valued analytic functions. Ilinois J Math, 2009, 53:303-324.
  • 7Exel R. Maximal subdiagonal algebras. Amer J Math, 1988, 110:775-782.
  • 8Garnett J B. Bounded Analytic Functions. New York: Springer, 2007.
  • 9Junge M, Le Merdy C, Xu Q. H∞-functional caculus and square functions on noncommutative L^p spaces. Asterisque, 2006, 305.
  • 10Marsalli M, West G. Noncommutative H^p spaces. J Oper Theory, 1988, 40:339-355.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部