摘要
介绍了一种基于迭代快速傅里叶变换(FFT)算法的优化方法来实现直线稀疏阵列的峰值旁瓣电平最优化,分析并给出了该方法的详细优化步骤。利用阵列因子与阵元激励之间存在的傅里叶变换关系,对不同的初始随机阵元激励分别作迭代循环,便可以得到最优的阵元分布。在迭代过程中,根据稀疏率将阵元激励按幅度大小置1置0来完成阵列稀疏。通过对仿真结果进行分析,证明了该方法的快速性、有效性和稳健性。
An optimum method based on iterative FFT algorithm for thinned linear arrays featuring an optimal peak side-lobe level is presented and the detailed steps of the method are discussed. An optimal elements distribution can be obtained when each iteration loop starts with a different random initialization of element excitations by using the fourier transform relationship exists between the array factor and the element excitations. Array thinning is accomplished by setting the amplitudes of the largest element excitations to unity and the others to zero during each iteration cycle. Finally, the analysis of the simulated results confirm the quickness, the effectiveness and the robustness of the method.
出处
《现代雷达》
CSCD
北大核心
2012年第5期62-65,共4页
Modern Radar
基金
国家自然科学基金资助项目(60702070
61079006)