期刊文献+

利用旋转电极形成50Hz带状介质阻挡放电的研究 被引量:1

Banded Dielectric Barrier Discharge Excited by 50 Hz Voltage Using Rotating Electode Equipment
下载PDF
导出
摘要 为了改善介质阻挡放电分布形成工业水平均匀放电,研制了旋转电极介质阻挡放电装置,在高频和低频下形成带状放电分布。通过拍摄50Hz半个周期内放电照片,发现放电在半个周期内形成了带状轨迹。这说明在半个周期内,放电残留物随气流流动为下游放电提供初电子,有利于形成带状轨迹分布。在工频条件下,拍摄了不同转速下的放电照片,发现随着转速增加,带状区域扩大,放电分布变得更均匀。上述现象及初步计算分析说明利用电极旋转带动放电残留物与壁电荷发生相对位移改变放电分布是成功的,为下一步实现工业应用水平上的均匀放电提供了可能性。 The banded dielectric barrier discharge excited by high and low frequency voltage was obtained in the rotating electrode equipment. To present the formation of the banded dielectric barrier discharge, we analyzed the discharge image excited by 50 Hz. In the half voltage cycle, the remains moving with the neutral gas flow could supply the seed electrons for the discharge in the downstream. On the voltage reversal, however, the surface charges provided the seed electrons for the discharge. The relationship between the discharge distribution and rotating rate was expressed. Moreover, with the increase of the rotating rate, the banded discharge region excited by 50 Hz was expanding, indicating that the rotating electrode could change the discharge distribution and might form homogeneous discharge for the industrial applications.
出处 《高电压技术》 EI CAS CSCD 北大核心 2012年第5期1114-1119,共6页 High Voltage Engineering
基金 国家自然科学基金(50877033)~~
关键词 带状介质阻挡放电 旋转电极 记忆效应 壁电荷 残留物 均匀放电 banded dielectric barrier discharge rotating electrode memory effects surface charge remanents homogeneous discharge
  • 相关文献

参考文献6

二级参考文献103

共引文献235

同被引文献16

  • 1Rostrup-Nielsen J R. New aspects of syngas production and use[J]. Catalysis Today, 2000, 63(2): 159-164.
  • 2Comfier J M, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors[J]. Journal of Physics D: Applied Physics, 2001, 34(18): 2798.
  • 3Tao X, Bai M, Li X, et al. CH42O2 reforming by plasma-challenges and opportunities[J]. Progress in Energy and Combustion Science, 2011.37(2): 113-124.
  • 4Bo Z, Yan J, Li X, et al. Plasma assisted dry methane reforming using gliding arc gas discharge., effect of feed gases proportion[J]. Interna- tional Journal of Hydrogen Energy, 2008, 33(20): 5545-5553.
  • 5Rucangjitt N, Akarawitoo C, Sreethawong T, et al. Reforming of CO2-containing natural gas using an AC gliding arc system., effect of gas components in natural gas[J]. Plasma Chemistry and Plasma Processing, 2007, 27(5): 559-576.
  • 6Bradford M C J, Vannice M A. CO2 reforming of CH4[J]. Catalysis Reviews, 1999, 41(1): 1-42.
  • 7Huang A, Xia G, Wang J, et al. CO2 reforming of CH4 by atmospheric pressure AC discharge plasma[J]. Journal of Catalysis, 2000, 189(2): 349-359.
  • 8Gangoli S P, Gutsol A F, Fridman A A. A non-equilibrium plasmasource: magnetically stabilized gliding arc discharge: I design and di- agnostics[J]. Plasma Sources Science and Technology, 2010, 19(6): 065003.
  • 9Zhang H, Li X D, Zhang Y Q, et al. Rotating gliding arc co-driven by magnetic field and tangential flow[J]. IEEE Transactions on Plasma Science, 2012, 40(12): 3493-3498.
  • 10Indarto A, Choi J W, Lee H, et al. Conversion of CO2 by gliding arc plasma[J]. Environmental Engineering Science, 2006, 23(6): 1033-1043.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部