摘要
为研究单次放电空气等离子体动力学机理,完善等离子体助燃理论,通过耦合组分浓度方程、能量传递方程以及Boltzmann方程建立等离子体动力学模型,分别对单次空气放电等离子体中的电子能量损失、氮粒子和氧粒子浓度的演化规律进行了研究分析。结果表明:电子能量损失主要存在于电子与氮、氧分子间的振动激发、电子态激发以及氮分子的电离等过程;随着时间的增长,氮分子振动激发态、氮原子粒子浓度先快速增加然后基本保持不变,氮分子、氮原子电子激发态、O2(b1)、氧原子以及氧原子电子激发态粒子浓度先增大后减小,而O2(a1)粒子浓度则不断增大。
To study the mechanism of air plasma single discharge and consummate the theory of plasma assisted combustion, we established a plasma kinetic model combined with component concentration equations, energy transfer equations and Boltzmann equations, and applied the model to analyze electronic energy loss in plasma, evolution laws of concentration of nitrogen particles, and concentration of oxygen particles. The results show that, the electronic energy loss mainly exists in the process of ionization of nitrogen molecules, vibrational and electronic excitation between electron, nitrogen and oxygen molecules; with the time increasing, the concentrations of vibrational excitation and nitrogen atoms of nitrogen molecule firstly increase and then basically remain unchanged, while the concentrations of nitrogen molecule, nitrogen atom electronic excitation, 02 (bl), oxygen atom and oxygen atom electronic excitation originally increase and then decrease, and the concentration of 02 ( al ) continually increases.
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2012年第5期1126-1131,共6页
High Voltage Engineering
基金
国家自然科学基金(50776100)~~
关键词
单次放电
等离子体
能量损失率
粒子浓度
演化规律
动力学机理
single discharge
plasma
energy loss rate
particle concentration
evolution law
kinetic mechanism