期刊文献+

关于反平均数的2个上界

Two Upper Bounds for the Antiaverage Numbers
原文传递
导出
摘要 对于整数k,θ≥3,β≥1,称k个元素集合S为(k;β,θ)^(0)自由集,如果S的最小元素为0且它没有互不相同的元素a_(ij)∈S(1≤j≤θ使得∑_(j=1)^(θ-1)a_(ij)=βa_(iθ)成立,S的最大元素记为max(S).反平均数定义为λ(k;β,θ)=min{max(S):S是(k;β,θ)^(0)自由集}.给出反平均数λ(k;β,θ)的2个界. For integers k,θ≥3 and,β≥1,we say a k-set S as a(k;β,θ)~0-free set if thesmallest number of S is 0,and S does not contain distinct elements aij∈S(1≤j≤9) suchthat∑j=1^θ=1 aij =βαiθ.The maximum number of S is denoted as max(S).The generalizedantiaverage number is defined asλ(k;β,θ) = min{max(S):S is(k;β,θ)^0-free set}.Twobounds of antiaverage numbers X(k;β,θ) are shown here.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第10期180-184,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(61163054 61163037)
关键词 反平均数 对偶集合 优美集 antiaverage set dual set graceful sets
  • 相关文献

参考文献1

二级参考文献8

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部