期刊文献+

含一阶导数的二阶微分方程组多点边值问题正解的存在性

The Existence of Positive Solutions for the Second-Order Equation Systems of Multi-Point Boundary Value Problems with Dependence on the First Order Derivative
原文传递
导出
摘要 讨论了一类含一阶导数的二阶常微分方程组多点边值问题正解的存在性.利用一个新的不动点定理,得到上述问题具有一个正解的充分条件. In this paper,we discuss the existence of positive solutions for the second-order equation systems of multi-point boundary value problems with dependence on the first order derivative.By a new fixed point theorem in a cone,we provide sufficient conditions under which the above boundary problem system has at least one positive solution.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第10期199-204,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(10971045) 河北省自然科学基金(A2009000664 A2011208012)
关键词 边值问题组 正解 不动点定理 boundary problem system positive solution fixed point theorem
  • 相关文献

参考文献5

  • 1Dehong Ji,Hanying Feng,Weigao Ge.The existence of symmetric positive solutions for some nonlinear equation systems[J].Applied Mathematics and Computation,2008,197:51-59.
  • 2高英,郭彦平,葛渭高.二阶拟线性微分方程组边值问题的三个对称正解[J].系统科学与数学,2004,24(4):513-519. 被引量:4
  • 3倪小虹,葛渭高.高耦合边值问题正解的存在性[J].应用数学学报,2005,28(2):210-215. 被引量:5
  • 4Guo Yanping and Ge Weigao.Positive solutions for three-point boundary value problems with dependence on the first order derivative[J].J Math Anal Appl,2004,290:291-301.
  • 5Yude Ji,Yanping Guo,Jiehua Zhang.Positive solutions for second-order quasilinear multi-point boundary value problems[J].Applied Mathematics and Computation,2007,189:725-731.

二级参考文献12

  • 1Agarwal P R, O'Regan D, Wong P J. Positive Solutions of Differential. Difference and Integral Equations. Singapore: Springer-Verlag, 2000.
  • 2Ruyun Ma R Y. Multiple Nonnegative Solutions of Second-order Systems of Boundary Value Problems.Nonlinear Anal., 2000, 42:1003-1010.
  • 3Wong P J Y, Agarwal R P. On Eigenvalue Intervals and Twin Eigenfunctions of Higher-order Boundary Value Problems. J. Comp. Appl. Math., 1998, 88:15-43.
  • 4Fink A M, Gatica J A. Positive Solutions of Second Order Systems of Boundary Value Problems. J.Math. Anal. Appl., 1993, 180:93-108.
  • 5Ma R Y. Existence of Positive Radial Solutions for Elliptic Systems. J. Math. Anal. Appl., 1996,201:375-386.
  • 6Fink A M, Gatica J A. Positive solutions of second order systems of boundary value problems. J.Math. Anal. Appl., 1993, 180: 93-108.
  • 7Ma Ruyun. Existence positive radial solutions for elliptic systems. J. Math. Anal. Appl., 1996,201: 375-386.
  • 8Ma Ruyun. Multiple nonnegative solutions of second order systems of boundary value problems.Nonlinear Analysis, 2000, 42: 1003-1010.
  • 9Avery R I and Henderson J. Three symmetric positive solutions for a second order boundary value problem. Appl. Math. Lett., 2000, 13: 1-7.
  • 10Wang Junyu. The existence of positive solutions for the one-dimensional p-Laplacian. Proc. Amer.Math. Soc., 1997, 125: 2275-2283.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部