期刊文献+

离散共振问题的非平凡解

Nontrivial Solutions of a Discrete Problem with Resonance
原文传递
导出
摘要 研究了一类二阶非线性差分方程两点边值问题非平凡解的存在性.假设该问题在无穷远点及零点处均是共振的,利用变分方法,同时考虑正、负能量泛函的临界点,在一定的假设条件下,通过临界群的计算,证明了该问题至少存在一个非平凡解. In this paper,we study the existence of nontrivial solutions of a two-point boundary value problem of second-order nonlinear difference equations.By using variational method,considering critical points of both the positive and negative energy functional,when the problem is resonant both at infinity and origin,combined with the computation of the critical group,we prove the problem has at least one non-zero solution in certain assumptions.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第10期238-243,共6页 Mathematics in Practice and Theory
基金 山西省自然科学基金(2011011002-4)
关键词 离散 共振 变分方法 临界群 discrete resonance variational method critical group
  • 相关文献

参考文献18

  • 1郭志明,庾建设.二阶超线性差分方程周期解与次调和解的存在性[J].中国科学(A辑),2003,33(3):226-235. 被引量:31
  • 2Cai Xiaochun,Yu Jianshe.Existence theorems for second-order discrete boundary value problems [J].J Math Anal Appl,2006(320):649-661.
  • 3Jiang Liqun,Zhou Zhan.Existence of nontrivial solutions for discrete nonlinear two point boundary value problems[J].Applied Mathematics and Computation,2006(180):318-329.
  • 4Liang Haihua,Weng Peixuan.Existence and multiple solutions for a second-order discrete boundary value problems via critical point theory[J].J Math Anal Appl,2007(326):511-520.
  • 5Bai Dingyong,Xu Yuangtong.Nontrivial solutions of boundary value problems of second-order difference equations[J].J Math Anal Appl,2007(326):297-302.
  • 6He Xiumei,Wu Xian.Existence and multiplicity of solutions for nonlinear second order difference boundary value problems[J].Computer and Mathematics with Applications,2009(57):1-8.
  • 7Yang Yang,Zhang Jihui.Existence of solutions for some discrete boundary value problems with a parameter[J].Applied Mathematics and Computation,2009(211):293-302.
  • 8Bin Huahong,Yu Jianshe,Guo Zhiming.Nontrivial periodic solutions for asymptotically linear resonant difference problem[J].J Math Anal Appl,2006(322):477-488.
  • 9Zhu Benshi,Yu Jianshe.Multiple positive solutions for resonant difference equations[J].Mathematical and Computer Modelling,2009(49):1928-1936.
  • 10Zhang Xiaosheng,Wang Duo.Multiple periodic solutions for difference equations with double resonance at infinity[J].Advances in Difference Equations;2011(2011):1-15.

二级参考文献20

  • 1Hale J K, Mawhin J. Coincidence degree and periodic solutions of neutral equations. J Differential Equations,1974, 15:295-307.
  • 2Elaydi S N. An Introduction to Difference Equations. New York: Springer-Verlag, 1999.
  • 3Pielou E C. An Introduction to Mathematical Ecology. New York: Willey Interscience, 1969.
  • 4Palais R S, Smale S. A generalized Morse theory. Bull Amer Math Soc, 1964(70): 165-171.
  • 5Michalek R, Tarantello G. Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems. J Differential Equations, 1988, 72:28-55.
  • 6Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations.CRMS AMS. 1986. 65:7-18.
  • 7Capietto A, Mawhin J, Zanolin F. A continuation approach to superlinear periodic boundary value problems.J Differential Equations, 1990, 88:347-395.
  • 8Agarwal R P. Difference Equations and Inequalities: Theory, Methods and Applications. New York: Marcel Dekker, 1992.
  • 9Erbe L H, Xia H, Yu J S. Global stability of a linear nonautonomous delay difference equations. J Diff Equations Appl, 1995(1): 151-161.
  • 10Gyoeri I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications. Oxford: Oxford Universitv Press. 1991.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部