摘要
复杂的系统通常有多因素与目标相关。这些因素中哪些与目标最相关,以及相关因素与目标之间的关系对复杂系统的分析很重要.首先采用基干信息熵的方法求取最关键因素.然舌对训练集进行聚类,最后采用拉格朗日多项式定义关键因素与目标之间的函数关系,并将该方法应用干智能交通系统中的行车油量分析系统,取得了较好的效果.
Complicated system usually has many factors that have relation with result. Which is the most important factor, and what is the relation between these factors with result. In this paper these most important factors are found by method of information entropy, then training set is clustered, finally Lagrange interpolation method is used to find the function between important factors and result. In the end of this paper, this method is used in vehicle oil quantity analysis system, and gets satisfying effect.
出处
《微电子学与计算机》
CSCD
北大核心
2012年第6期68-70,75,共4页
Microelectronics & Computer
基金
广东省自然科学基金项目(9451063101002238)
关键词
信息熵
聚类
多项式插值
information entropy
cluster
lagrange interpolation method