期刊文献+

无线传感器网络可分负载调度算法 被引量:5

A Scheduling Algorithm with Divisible Load in Wireless Sensor Networks
下载PDF
导出
摘要 为了节省传感器节点能量,提高网络资源利用率,提出了一种无线传感器网络可分负载调度(DLSW)算法.DLSW算法以LEACH协议为基础,分群内和群间两阶段进行任务调度.在群内调度阶段,群内节点共享同一信道,相继向群首发送数据;在群间调度阶段,群首节点和SINK节点之间独立的信道使得群首将群内节点报告的数据融合后,并行向SINK节点传送结果,同时完成数据发送.DLSW算法通过去除节点间的通信干扰使得总任务完成时间减少、资源利用率提高.实验结果表明,在大规模的网络环境下,DLSW算法可以使总任务完成时间减少20%,网络能耗减少10%. A divisible load scheduling algorithm(DLSW) in wireless sensor networks is proposed to reduce the energy-consumption of sensors and to improve network resource utilization.DLSW consists of two phases: intra-cluster task scheduling and inter-cluster task scheduling.All intra-cluster node share the same channel to the cluster head,and DLSW makes each intra-cluster node send its result to the cluster head sequentially during the intra-cluster task scheduling.The independent channel between each cluster head and the SINK makes the cluster heads to fuse the data from intra-cluster nodes and then send fused data to SINK concurrently during inter-cluster task scheduling.The DLSW algorithm reduces the time to complete the task and improves network resource utilization by removing communication interference and idle.Simulation results show that the proposed algorithm enables the makespan reduced by 20%,and energy consumption reduced by 10% in large-scale wireless sensor networks.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第6期23-28,共6页 Journal of Xi'an Jiaotong University
基金 教育部创新团队发展计划资助项目(IRT1050) 中央高校基本科研业务费专项资金资助项目(CHD2011JC137 CHD2011JC159)
关键词 无线传感器网络 任务调度 可分负载 数据融合 wireless sensor networks task scheduling divisible load data fusion
  • 相关文献

参考文献2

二级参考文献21

  • 1BHARADWAJ V,GHOSE D,ROBERTAZZI T G.Divisible load theory:a new paradigm for load scheduling in distributed systems[J].Cluster Computing,2003,6(1):7-18.
  • 2MOGES M,ROBERTAZZI T G.Wireless sensor networks:scheduling for measurement and data reporting[J].IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):327-340.
  • 3LIU Haoying,YUAN Xiaojing,MOGES M.An efficient task scheduling method for improved network delay in distributed sensor networks[C] //Proceedings of Trident Com 2007.Piscataway,NJ,USA:IEEE,2007.1-8.
  • 4LIU Haoying,SHEN Jian,YUAN Xiaojing,et al.Performance analysis of data aggregation in wireless sensor Mesh networks[C] //Proceedings of Earth & Space 2008.Piscataway,NJ,USA:IEEE,2008:1-8.
  • 5CHOI K,ROBERTAZZI T G.Divisible load scheduling in wireless sensor networks with information utility performance[C] // Proceedings of IPCCC 2008.Piscataway,NJ,USA.IEEE,2008:9-17.
  • 6ZENG Zhiwen,LIU Anfeng,LI Deng,et al.A highly efficient DAG task scheduling algorithm for wireless sensor networks[C] //Proceedings of ICYCS2008.Piscataway,NJ,USA:IEEE,2008:570-575.
  • 7LIN Jianyong,XIAO Wendong,LEWIS F L,et al.Energy-efficient distributed adaptive multisensor scheduling for target tracking in wireless sensor networks[J].IEEE Transactions on Instrumentation and Measurement,2009,58(6).1886-1896.
  • 8YANG Yang,VAN DER RAADT K,CASANOVA H.Multiround algorithms for scheduling divisible loads[J].IEEE Trans on Parallel and Distributed Systems,2005,16 (11):1092-1102.
  • 9HEINZELMAN W,CHANDRAKASAN A.An application-specified protocol architecture for wireless microsensor networks[J].IEEE Transactions on Wireless Communications,2002,1(4):660-670.
  • 10AKYILDIZ I F, SU W. Wireless sensor networks: a survey[J]. Computer Networks, 2002, 38 (4):393- 422.

共引文献25

同被引文献46

  • 1Jennifer Yick, Biswanath Mukherjee, Dipak Ghosal. Wireless Sensor Network Survey [ J ]. Computer Networks, 2008,52 ( 12 ) : 2292-2330.
  • 2Qin Wang, Mark Hempstead, Woodward Yang. A Realistic Power Consumption Model for Wireless Sensor Network Devices [ C ]// Sensor and Ad Hoc Communications and Networks. Reston: IEEE Conference Publications,2006.
  • 3Wendi Rabiner Heinzelman, Anantha Chandrakasan, Hari Balakrishnan. Energy-Efficient Communication Protocol for Wireless Microsensor Networks [ C ]//System Sciences. Hawaii: IEEE Conference Publications,2000.
  • 4Kijeung Choi, Robertazzi T G. Divisible Load Scheduling in Wireless Sensor Networks with Information Utility [ C ]// Performance, Computing and Communications Conference. Texas: IEEE Conference Publications,2008.
  • 5Yang Yu, Viktor K Prasanna. Energy-Balanced Task Allocation for Collaborative Processing in Wireless Sensor Networks [ J ]. Mobile Networks and Applications ,2005,10 (1) :115-131.
  • 6Yichao Jin, D'ali Wei, Alexander Gluhak, et al. Latency and Energy- Consumption Optimized Task Allocation in Wireless Sensor Networks [ C ]//Wireless Communications and Networking Conference. Sydney : IEEE Conference Publications ,2010.
  • 7Thomas G Robertazzi. Ten Reasons to Use Divisible Load Theory [ J ]. Computer,2003,36 ( 5 ) :63-68.
  • 8Mequanint Moges, Thomas G Robertazzi. Wireless Sensor Networks:Scheduling for Measurement and Data Reporting [ J ]. 1EEE Transactions on Aerospace and Electronic Systems,2006,42 ( 1 ) :327-339.
  • 9代亮,沈中,常义林,等.无线传感器网络多轮任务调度算法[J].两安交通大学学报,2010,44(6):27-32.
  • 10Kang H, Guan P, l,iu X ,et al. Ulility-Based Divisible Sensing Task Scheduling in Wireless Sensor Networks [ J ]. Department of Computer Science Oklahoma State University Stillwater, 2007: 342-348.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部