期刊文献+

采用多目标粒子群算法的模拟电路故障诊断研究 被引量:7

Analog Circuit Fault Diagnosis with Multi-Objective Particle Swarm Optimization
下载PDF
导出
摘要 提出了一种容差条件下基于多目标粒子群(MOPSO)算法的模拟电路软故障诊断方法.通过灵敏度分析,建立模拟电路故障诊断的约束线性规划方程组,以元件参数变化量与标称值的百分比作为故障判据.针对MOPSO中目标空间增加时种群选择压力影响算法性能的问题,采用阶有效优化准则代替传统的Pareto优化准则,引入最优折中解作为全局最优解,从而提出基于阶有效的平衡全局搜索策略多目标粒子群(ESEO-MOPSO)算法,并将其用于模拟电路故障诊断的约束线性规划方程组的求解中.仿真结果表明,该方法兼顾故障元件的定位和故障元件参数变化量的估计,可以有效地实现模拟电路在容差条件下的软故障定量诊断. Taking tolerance as the parameter, a method based on multi-objective particle swarm optimization (MOPSO) for soft fault diagnosis of analog circuit is proposed. The constraint linear programming equation is constructed according to the sensitivity analysis of node-voltage. The percentage of the parameter deviation against the nominal value is considered as the diagnosis criterion. Aiming at the selective pressure in the MOPSO caused by the number of the increased objectives, the preference order is chosen instead of the traditional Pareto optimum. Then "the best compromise" is introduced as a global best to update the particle velocity. Thus an equilibrium selection of global search following the effective ordering (ESEO-MOPSO) is employed to divide the node-voltage incremental equations. The simulation illustrates that the proposed method enables to locate the faulty element and estimate the parameter deviation effectively.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第6期92-97,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60971118)
关键词 模拟电路 故障诊断 粒子群算法 灵敏度 analog circuit fault diagnosis particle swarm optimization sensitivity
  • 相关文献

参考文献2

二级参考文献28

  • 1焦永昌,杨科,陈胜兵,张福顺.粒子群优化算法用于阵列天线方向图综合设计[J].电波科学学报,2006,21(1):16-20. 被引量:59
  • 2Li F, Woo P Y. The invariance of node-voltage sensitivity sequence and its application in a unified fault detection dictionary method [J]. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 1999, 46 (10): 1222-1227.
  • 3He Y, Sun Y. Neural network-based L1- norm optimisation approach for fault diagnosis of nonlinear circuits with tolerance [J]. IEE Proceedings on Circuits, Devices and Systems, 2001, 148(4): 223-228.
  • 4Tadeusiewicz M, Halgas S, Korzybski M. An algorithm for soft fault diagnosis of linear and nonlinear circuits [J]. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2002, 49(11): 1648-1653.
  • 5Wang P, Yang S Y. A new diagnosis approach for handling tolerance in analog and mixed signal circuits by using fuzzy math [J]. IEEE Transactions on Circuits and System-Ⅰ: Regular Papers, 2005, 52(10): 2118-2127.
  • 6Eberhart R, Kennedy J. A new optimizer using particle swarm theory [C] //Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, 1995:39-43.
  • 7Walker R C. Introduction to mathematical programming [M]. Beijing: China Machine Press, 2005:81-181.
  • 8Gao Y L, Xu C X, Li J M. Linear programming relax-PSO hybrid bound algorithm for a class of nonlinear integer programming problems [C] //Proceedings of International Conference on Computational Intelligence and Security, Guangzhou, 2006:380-383.
  • 9Yang B, Chen Y P, Zhao Z L, et al. A master-slave particle swarm optimization algorithm for solving constrained optimization problems [C]//Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, 2006:3208-3212.
  • 10CUI S, MOHAN A, and WEILE D S. Pareto optimal design of absorbers using a parallel elitist nondominat- ed sorting genetic algorithm and the finite element- boundary integral method [J]. IEEE Transactions on Antennas and Propagation, 2005, 53(6): 2099-2107.

共引文献10

同被引文献54

  • 1张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173. 被引量:59
  • 2刘新颖,王曙鸿,邱捷.改进粒子群算法及其在超导电缆参数优化中的应用[J].西安交通大学学报,2007,41(2):219-222. 被引量:5
  • 3黄俊,何怡刚.开关电流电路故障诊断技术的初步研究[J].现代电子技术,2007,30(9):76-78. 被引量:3
  • 4HU Yanhai,YAN Junqi,MA Dengzhe,YE Feifan,ZHANG Jie.MULTI-SHOP SCHEDULING PROBLEM[J].Chinese Journal of Mechanical Engineering,2007,20(3):109-112. 被引量:2
  • 5杨士元.模拟系统的故障诊断与可靠性设计[M].北京:清华大学出版社,2001.25-30.
  • 6YUAN L F,HE Y G,HUANG J Y,et al. A new neural-network-based fault diagnosis approach for analog circuitsby using kurtosis and entropy as a preprocessor [ J ].IEEE Transactions on Instrumentation and Measurement,2010,59(3) :586-595.
  • 7EI-GAMAL M A,M0HAMED M D A. Ensembles of neu-ral networks for fault diagnosis in analog circuits [ J ].Journal of Electronic Testing,2007,23(4) :323-339.
  • 8AMMAN F,AMINIAN M, COLLINS JR H W. Analogfault diagnosis of actual circuits using neural networks [ J ] .IEEE Transactions on Instrumentation and Measurement,2002 , 51(3):544-550.
  • 9GUO J R, HE Y G,TANG SH X,et al. Switched cur-rent circuits test using pseudo-random method [ J ]. Ana-log Integrated Circuit and Signal Processing,2007,52(1-2) ; 47-55.
  • 10GUO J G,CAI X H,HE Y G. PRBS test signature anal-ysis of switched current circuit [J]. 1st International Con-ference on Information Science and Engineering,2009 :627-630.

引证文献7

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部