期刊文献+

H型断面渐近发散振动气动力特征的数值模拟研究 被引量:1

NUMERICAL STUDY ON AERODYNAMIC FORCES ON H-SHAPE SECTION UNDER ASYMPTOTIC DIVERGENCE VIBRATION
原文传递
导出
摘要 基于计算流体动力学(CFD)数值模拟和连续小波变换的方法研究了渐近发散振动条件下H型断面的非线性气动力。采用二维非定常不可压缩雷诺平均N-S方程结合重整化群(RNG)k-湍流模型计算纯扭转或竖向渐近发散振动条件下的气动力。采用复Morlet小波对气动力进行连续小波变换,结合蛇形罚函数方法提取小波脊。由小波脊识别气动力的各瞬时频率及对应的瞬时振幅。研究表明:H型断面在大振幅振动条件下的气动力存在多倍于强迫振动频率的高次谐波,各频率成份的瞬时振幅与激励瞬时振幅间存在复杂的非线性关系。 This paper presents a numerical simulation of nonlinear aerodynamic forces on a H-shape section under an asymptotic divergence oscillation through the integration of computational fluid dynamics (CFD) and continuous wavelet transform (CWT). A H-shape section is forced in either torsional or vertical oscillation and the flow field is computed by using Reynolds-averaged Navier-Stokes (N-S) equations for two dimensional incompressible flow to obtain the aerodynamic forces on the H-shape section. A Renormalization group (RNG) k-e turbulence model is used to simulate turbulence. The aerodynamic forces are analyzed by CWT based on complex Morlet wavelet. The ridge of the wavelet transform is searched by the snake penalization method. The instantaneous frequencies and amplitudes of the aerodynamic forces are obtained from the ridge. The study reveals that there are high-order harmonic aerodynamic forces of several times forced frequency and complex nonlinear relationship between instantaneous amplitudes of main frequency components of the aerodynamic forces and that of a forced oscillation when a H-shape section is forced in a large amplitude oscillation.
作者 黄林 廖海黎
出处 《工程力学》 EI CSCD 北大核心 2012年第A01期194-200,共7页 Engineering Mechanics
基金 国家自然科学基金项目(90815016) 浙江省自然科学基金项目(Y1111057) 宁波市自然科学基金项目(2008A610103)
关键词 桥梁 非线性气动力 CFD数值模拟 H型断面 渐近发散振动 连续小波变换 高次谐波 bridge nonlinear aerodynamic forces CFD numerical simulation H-shape section asymptotic divergence oscillation continuous wavelet transform high-order harmonic
  • 相关文献

参考文献15

  • 1Larsen Allan. Aerodynamics of the Tacoma Narrows Bridge: 60 years later [J]. Structural EngineeringInternational, 2000, 10(4): 243--248.
  • 2Green Daniel, Unruh William G. The failure of the Tacoma Bridge: A physical model [J]. American Journal of Physics, 2006, 74(8): 706--716.
  • 3Matsumoto Masaru, Shirato Hiromichi, Yagi Tomomi, et al. Effects of aerodynamic interferences between heaving and torsional vibration of bridge decks: The case of Tacoma Narrows Bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(12/13/14/15): 1547-- 1557.
  • 4张伟,葛耀君.H形断面桥梁风致振动的流场机理[J].土木工程学报,2009,42(5):90-95. 被引量:6
  • 5Chen Xinzhong, Kareem Ahsan. Nonlinear response analysis of long-span bridges under turbulent winds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14/15): 1335-- 1350.
  • 6Chen Xinzhong, Kareem Ahsan. Aeroelastic analysis of bridges: Effects of turbulence and aerodynamic nonlinearities [J]. Journal of Engineering Mechanics, 2003, 129(8): 885--895.
  • 7Zhang Xinjun, Xiang Haifan, Sun Bingnan. Nonlinear aerostatic and aerodynamic analysis of long-span suspension bridges considering wind-structure interactions [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(9): 1065-- 1080.
  • 8Diana G, Resta F, Rocchi D. A new numerical approachto reproduce bridge aerodynamic non-linearities in time domain [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1871 -- 1884.
  • 9Huang Lin, Liao HaiLi, Wang Bin, et al. Numerical simulation for aerodynamic derivatives of bridge deck [J] Simulation Modelling Practice and Theory, 2009, 17(4): 719--729.
  • 10Batina J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes [J]. AIAA Journal, 1990, 28(8): 1381 -- 1388.

二级参考文献11

  • 1Konstantinidis E, Balabani S, Yianneskis M. Conditional averaging of PIV plane wake data using a cross-correlation approach [ J ]. Experiments in Fluids, 2005, 39 ( 1 ) : 38-47
  • 2Perrin R, et al. Phase-averaged measurements of the turbulence properties in the near wake of a circular cylinder at high Reynolds number by 2C-PIV and 3C-PIV [J]. Experiments in Fluids, 2007, 42( 1 ) : 93-109
  • 3Reynolds W, Hussain A. The mechanics of an organized wave in turbulent shear flow. Part3: Theoretical models and comparisons with experiments [ J ]. Journal of Fluid Mechanics, 1972, 54 : 263-288
  • 4Wlezien R, Way J. Techniques for the experimental investigation of the near wake of a circular cylinder [ J ]. AIAA Journal, 1979, 17:563-570
  • 5Cantwell B J, Coles D. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder [J]. Journal of Fluid Mechanics, 1983, 136:321-374
  • 6Larsen A. Aerodynamics of the Tacoma Narrows Bridge : 60 years later [ J ]. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2000, 10(4) : 243-248
  • 7Green D, Unruh W G. The failure of the Tacoma Bridge : a physical model [ J ]. American Journal of Physics, 2006, 74(8) : 706-716
  • 8Adrian R J. Twenty years of particle image velocimetry [J]. Experiments in Fluids, 2005, 39(2) : 159-169
  • 9Fujisawa N, Takeda G, Ike N. Phase-averaged characteristics of flow around a circular cylinder under acoustic excitation control[J]. Journal of Fluids and Structures, 2004, 19(2) : 159-170
  • 10Dutsch H, et al. Low-Reynolds-number flow around an oscillating cylinder at low keulegan-Carpenter numbers [J]. Journal of Fluid Mechanics, 1998, 260:249-271

共引文献5

同被引文献21

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部