期刊文献+

模型指导的多维GPU软件低功耗优化方法 被引量:4

Model-Driven Multi-Dimensional Low-Power Optimization Method for GPU
下载PDF
导出
摘要 作为众核体系结构的典型代表,GPU(Graphics Processing Units)芯片集成了大量并行处理核心,其功耗开销也在随之增大,逐渐成为计算机系统中功耗开销最大的组成部分之一,而软件低功耗优化技术是降低芯片功耗的有效方法.文中提出了一种模型指导的多维低功耗优化技术,通过结合动态电压/频率调节和动态核心关闭技术,在不影响性能的情况下降低GPU功耗.首先,针对GPU多线程执行模型的特点,建立了访存受限程序的功耗优化模型;然后,基于该模型,分别分析了动态电压/频率调节和动态核心关闭技术对程序执行时间和能量消耗的影响,进而将功耗优化问题归纳为一般整数规划问题;最后,通过对9个典型GPU程序的评测以及与已有方法的对比分析,验证了该文提出的低功耗优化技术可以在不影响性能的情况下有效降低芯片功耗. As a typical many-core processor,GPU(Graphics Processing Units) integrates tremendous parallel processing cores,and the power consumption increases correspondingly,which makes it as one of the largest power consumers in modern computer systems.Software low-power optimization method is an effective method to reduce power consumption.This paper proposes a model-driven multi-dimensional low-power optimization method of coordinating dynamic voltage/frequency scaling and dynamic concurrency throttling method to lower the power consumption without sacrificing performance.Firstly,we establish the power optimization model targeted for memory-bounded program,based on the multi-thread execution model on GPU.Then,we analyze the impacts of dynamic voltage/frequency scaling and dynamic concurrency throttling on the program performance and energy consumption according to the established model,and induce the optimization problem as a typical integer programming problem.Finally,through detailed evaluation on 9 typical GPU applications and comparison with existing method,the experimental results validate the proposed multi-dimensional low-power optimization method could effectively reduce the energy consumption without performance loss.
作者 王桂彬
出处 《计算机学报》 EI CSCD 北大核心 2012年第5期979-989,共11页 Chinese Journal of Computers
基金 国家自然科学基金(60921062 60903059 60903044)资助
关键词 低功耗优化 GPU 动态核心关闭 动态电压/频率调节 low-power optimization GPU dynamic concurrency throttling dynamic voltage and frequency scaling
  • 相关文献

参考文献17

  • 1Che Shuai, Boyer Michael, Meng Jiayuan, Tarjan David, Sheafer Jeremy W, Lee Sang-Ha, Skadron Kevin. Rodinia: A benchmark suite for heterogeneous computing//Proceed- ings of the 2009 IEEE International Symposium on Workload Characterization(IISWC-09). Washington, DC, USA, 2009: 44-54.
  • 2Li J, Martinez J. Dynamic power-performance adaptation of parallel computation on chip multiprocessors//Proceedings of the 12th International Symposium on High-Performance Computer Architecture (HPCA-12). Austin, Texas, 2006: 77-87.
  • 3Curtis-Maury Matthew, Shah Ankur, Blagojevic Filip, Nikolopoulos Dimitrios S, de Supinski Bronis R, Sehulz Martin. Prediction models for multi-dimensional power- performance optimization on many eores//Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques ( PACT ' 08 ). New York, NY, USA, 2008:250-259.
  • 4NVIDIA. Compute uni{ied device architecture programming guide v2.1beta. 2009.
  • 5Baghsorkhi Sara S, Delahaye Matthieu, Patel Sanjay J, Gropp William D, Hwu Wen-reel W. An adaptive perform- ance modeling tool for GPU architectures//Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Prac- tice of Parallel Programming (PPoPP~ 10). New York, NY, USA, 2010:105-114.
  • 6Li Keqin. Performance analysis of power-aware task schedu- ling algorithms on multiprocessor computers with dynamic voltage and speed. IEEE Transactions on Parallel and Dis- tributed Systems, 2008, 19(11): 1484-1497.
  • 7骆祖莹.芯片功耗与工艺参数变化:下一代集成电路设计的两大挑战[J].计算机学报,2007,30(7):1054-1063. 被引量:17
  • 8Adam Butts J, Sohi Gurindar S. A static power model for architects//Proceedings of the 33rd Annual ACM/IEEE In- ternational Symposium on Microarchitecture (MICRO 33). New York, NY, USA, 2000~ 191-201.
  • 9Brooks David, Tiwari Vivek, Martonosi Margaret. Wattch: A framework for architectural-level power analysis and opti- mizations//Proceedings of the 27th Annual International Symposium on Computer Architecture (ISCA ~ 00). New York, NY, USA, 2000:83-94.
  • 10Kahng Andrew B, Li Bin, Peh Li-Shiuan, Samadi Kambiz. ORION 2.0 : A fast and accurate NoC power and area model for early-stage design space exploration//Proceedings of the Conference on Design, Automation and Test in Europe (DATE'09). European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 2009:423-428.

二级参考文献5

共引文献16

同被引文献15

  • 1WANG H F, CHEN Q K. Power consumption model of reliability-aware GPU clusters [ J ]. The Journal of Su- percomputing, 2013, 26 ( 7 ) : 993-10 1 4.
  • 2WANG H F, CHEN Q K. Power estimating model and analysis of general programming on GPU [ J ]. Journal of Software, 2012, 7(5):1164-1170.
  • 3MAI A, HASAN A. A bluetooth low energy implantable glucose monitoring system [ C ]. Proceedings of the 41st European Microwave Conference, Manchester, UK, 2011 : 1265-1268.
  • 4YU B, XU L SH, LI Y X. Bluetooth low energy (BLE) based mobile electrocardiogram monitoring system [ C ]. International Conference on Information and Automa- tion, Shenvan~. China. 2012:763-1170.
  • 5CHEN Q K, WANG H F. ZHUANG S L, et al. Parallel algorithm of IDCT with GPUs and CUDA for large-scale video quality of 3G [ J ]. Journal of Computers, 2012, 7 (8) :1880-1886.
  • 6欧阳骏,陈子龙,黄宇淋.蓝牙4.OBLE开发完伞手册-物联网开发技术实践[M].北京:化学工业出版社,2013.
  • 7郑凯,赵宏伟,张孝临.基于ZigBee网络的心电监护系统的研究[J].仪器仪表学报,2008,29(9):1908-1911. 被引量:49
  • 8李战明,李振兴.ZigBee技术在人员搜救系统中的应用[J].电子测量与仪器学报,2011,25(2):186-190. 被引量:20
  • 9林一松,杨学军,唐滔,王桂彬,徐新海.一种基于并行度分析模型的GPU功耗优化技术[J].计算机学报,2011,34(4):705-716. 被引量:13
  • 10杨军,张和生,潘成,孙伟,贾利民.一种交通信息采集传感器网络的IP互连方法[J].仪器仪表学报,2011,32(11):2596-2601. 被引量:18

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部