期刊文献+

无物方信息的未检校近景影像的方位元素估计

Orientation Parameters Estimation for Uncalibrated Close-range Image Sequences Without Scene Information
下载PDF
导出
摘要 无物方控制信息的未检校立体影像序列只能实现度量重建,而实现度量重建必须恢复内外方位元素,利用层次重建方法,根据三张以上同名像点,用迭代分解算法恢复投影矩阵和结构,然后采用基于绝对二次曲面的自检校方法恢复相机的内方位元素,并进一步得到外方位元素.此方法可以在不需要物方控制的条件下得到统一模型,若有物方控制即可通过绝对定向获取物方坐标,可用于低精度的三维测量,也可作为高精度光束法平差的初值. Metric reconstruction is the highest level reconstruction obtained from uncalibrated image sequences without any scene information, which needs recovering interior and exterior parameters. According to the stratified reconstruction approaches in computer vision, projective matrix and structure are recovered from the correspondences of more than three views through iterative singular value decomposition algorithm, then interior parameters can be estimated through the absolute quadric self-calibration method, then exterior parameters are recovered subsequently. With this approach, free models are available without any scene information, Euclidean reconstruction can be realized through absolute orientation when sufficient scene controls are available. The orientation results can be used in low accuracy 3 dimensional measurement or as the initial values for high-accuracy bundle adjustment.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期763-767,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金项目(40974007) 中国博士后科学基金(20100480948)
关键词 近景摄影测量 射影重建 自检校 层次重建 方位元素 close-range photogrammetry projective reconstruction self-calibration stratified reconstruction orientation parameters
  • 相关文献

参考文献12

  • 1Heyden A, A.tr6sm K. Euclidean reconstruction from constant intrinsic parameters[C]//Proceeding International Conference of Pattern Recognition. Vienna: [s. n], 1996 : 339--343.
  • 2Hartley R L. Self-calibration of stationary cameras[J]. Inte2 Journal of Computer Vision, 19 9 7,2 2 ( 1 ) : 5.
  • 3Pan H P. A direct closed-form solution to general relative orientation of two stereo views[J]. Digital Signal Processing,1999,9(27):195.
  • 4Faugeras O. Stratification of 3D vision., projective, affine, and metric representations[J]. Journal of the Optical Society of America, 1995,12(3) :465.
  • 5Pollefeys M. Self-calibration and metric 3D reconstruction from uncalibrated image sequences [ D ]. Leuven: Katholieke Universiteit. Department of Electrical Engineering, 1999.
  • 6邱志强,于起峰.从建筑物序列图像恢复三维结构[J].武汉大学学报(工学版),2003,36(3):13-15. 被引量:4
  • 7Wang G H, Wu J. Quasi-perspective projection model: theory and application to structure and motion factorization from uncalibrated image sequences[J]. Inter Journal of Computer Vision,2010,87(3) :213.
  • 8Wang G H, Wu J. Perspective 3-D euclidean reconstruction with varying camera parameters [J]. IEEE Trans on Circuits and Systems for Video Technology, 2009,19 (12) : 1793.
  • 9Tomasi C, Kanade T. Shape and motion from image stream under orthography., a factorization method [ J ]. International Journal of Computer Vision, 1992, 9(2):137.
  • 10Sturm P, Triggs B. A factorization based algorithm for multi- image projective structure and motion [C]//Proceeding 4th European Conference on Computer Vision.[ S. 1. ] Springer,1996:709-720.

二级参考文献2

  • 1Poelman, Kanade. A paraperspective factorization method for shape and motion recovery [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1997,19(3):206--218.
  • 2Yu Qifeng, Qiu Zhiqiang. GPS supported positioning for ground based on video image sequences on UAV Platform[C]. 2002 International Symposium on GPS/GNSS, Wuhan China, 2002. C10--2.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部