期刊文献+

Bayes估计中模糊先验信息的一类定量描述方法

A Method for Quantitatively Describing Fuzzy Prior Information in Bayesian Estimation
下载PDF
导出
摘要 在Bayes可靠性评估中,为了提高小样本条件下可靠性的精度,需要利用专家经验等信息.而可靠性工程专家习惯于将自己的意见用模糊信息来表述.基于模糊隶属函数,对专家模糊经验信息做出了定量描述,并在此基础上利用Bayes方法实现了语音选择器的专家信息与实验数据的有效融合.实例表明,在专家经验信息的置信区间较宽时,采用三角型模糊分布能有效提高可靠性评估的精度.而置信区间较窄时,正态型分布具有更好的融合效果. In order to precisely evaluate reliability under small sample size, prior information such as expert judgment is needed in Bayesian reliability estimation. General Bayesian method cannot deal with expert judgment when it is fuzzy. With a quantitative description method of fuzzy prior distribution for microphone selectors introduced, based on fuzzy membership functions, experts' prior information can be effectively merged with test data with Bayes method. Reliability evaluation shows that, the precision can be enhanced notably for data with small samples by using Bayes estimation with fuzzy prior distributions. Furthermore, triangle fuzzy prior distributions can be used to enhance the precision when the bandwidth of the fuzzy prior distributions are wide. And normal distributions are applicable to the circumstance when the fuzzy prior distributions are narrow.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期775-778,共4页 Journal of Tongji University:Natural Science
基金 "十一五"国家科技支撑计划(2009BAG11B02) 上海高等学校本科教育高地建设项目(第三期)
关键词 模糊先验信息 BAYES方法 可靠性评估 小样本 fuzzy prior information Bayes method reliability evaluation small samples
  • 相关文献

参考文献9

  • 1Boudali H, Dugan J B. A discrete-time Bayesian network reliability modeling and analysis framework [J ]. Reliability Engineering and System Safety, 2005(87):337.
  • 2Langseth H, Portinale L. Bayesian networks in reliability [J]. Reliability Engineering and System Safety, 2007(92) : 92.
  • 3Doguc O, Ramirez-Marquez J E. A generic method for estimating system reliability using Bayesian networks [ J ]. Reliability Engineering and System Safety, 2009(94): 542.
  • 4Montani S, Portinale L, Bobbio A, et al. A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks[J]. Reliability Engineering and System Safety, 2008(93): 922.
  • 5Mudelsee M, Alkio M. Quantifying effects in two-sample environmental experiments using bootstrap confidence intervals [J]. Environmental Modeling & Software, 2007,22 (1) : 84.
  • 6Cristiano C, Danilo M, Marco M, et al. Deterministic learning for maximum-likelihood estimation through neural networks[J]. IEEE Transactions on Neural Networks, 2008,19(8) :1456.
  • 7Wilson A G, Huzurbazar A V. Bayesian networks for multilevel system reliability [J ]. Reliability Engineering and System Safety, 2007(92):1413.
  • 8刘晗,郭波.小子样产品可靠性Bayes评定中的相容性检验方法研究[J].机械设计与制造,2007(5):165-167. 被引量:8
  • 9赵永翔,杨冰,张卫华.随机疲劳长裂纹扩展率的新概率模型[J].交通运输工程学报,2005,5(4):6-9. 被引量:9

二级参考文献12

  • 1张金槐 唐雪梅.Bayes方法[M].长沙:国防科技大学出版社,1989..
  • 2赵永翔 杨冰 高庆.提速货车RD2轴的疲劳断裂可靠性与安全性研究[R].成都:西南交通大学,2004..
  • 3Wang G S.Intrinsic statistical characteristics of fatigue crack growth rate[J].Engineering Fracture Mechanics,1995,51(5)..787-803.
  • 4Wang K S,Chang S T,Shen Y C.Dynamic reliability models for fatigue crack growth problem [J].Engineering Fracture Mechanics,1996,54(4):543-556.
  • 5Rocha M M,Schueller G I.A probabilistic criterion for evaluating the goodness of fatigue crack growth models[J].Engineering Fracture Mechanics,1996,53(5):707-731.
  • 6Paris P,Erdogan F.A critical analysis of crack growth laws [J].Journal of Basic Engineering,1963,85 (10):528-534.
  • 7Forman R G,Kearney V E,Engle R M.Numerical analysis of crack propagation in cyclic-loaded structure[J].Journal of Basic Engineering,1967,89(9):459-464.
  • 8Lothar Sachs 著,罗永泰,史道济 译.应用统计手册[M].天津科技翻译出版公司,1988.294~318,335~338.
  • 9B.S.艾沃日特 著,刘韵源,周家丽 译.列联表分析[M].北京:科学出版社,1980:12~14.
  • 10张湘平,曹国敏,等.验前信息与现场子样的相容性检验方法研究[J].飞行器测控学报,2002,21(1):55-59. 被引量:11

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部