期刊文献+

基于贝叶斯网络的轻度认知障碍诊断系统

Diagnostic System of Mild Cognitive Impairment Based on Bayesian Network
下载PDF
导出
摘要 提出一种基于依赖性分析和打分函数进行贝叶斯网络结构学习的新方法,并把该方法应用于轻度认知障碍诊断系统中。该算法首先通过对结点变量间的依赖性分析测试和无向图的遍历,获得贝叶斯网络结构中所有结点的先验顺序,然后用启发式打分—搜索方法获得最优的贝叶斯网络结构。实验结果表明,该算法能够在不增加算法复杂度的情况下,完成无结点顺序要求的贝叶斯网络学习,并能应用于轻度认知障碍诊断系统中,实现较好的预测,进而辅助医生的诊断。 This paper presents a new method in structure learning of Bayesian network based on dependency analysis and scoring function. Through analyzing the dependent relationship between variables and accessing to undirected graph, the prior sequence of all of the nodes in Bayesian network structure is obtained. The optimal structure of the Bayesian network is then generated by heuristic-search method. The new algorithm has been applied to the diagnostic system of mild cognitive impairment. The experimental results show that the new algorithm can better predict the possibility of mild cognitive impairment under the similar complexity, and further assist the diagnosis of doctor.
作者 孙岩 唐一源
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第3期336-341,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60971096) 国家社会科学基金重点项目(11AZD089)
关键词 贝叶斯网络 诊断系统 依赖性分析 轻度认知障碍 Bayesian network diagnostic system dependency analysis mild cognitive impairment
  • 相关文献

参考文献18

  • 1CHENG J, GREINER R, KELLY J. Learning Bayesian networks from data: an efficient information-theory Based approach [J]. Artificial Intelligence, 2002,137(1-2): 43-90.
  • 2YANG J, LI L, WANG A G A partial correlation-based Bayesian network structure learning algorithm under linear SEM[J]. Knowledge-Based Systems, 2011, 24: 963-976.
  • 3LIN X T, CHENG B, CHEN J L. Context-aware end-to-end Qos qualitative diagnosis and quantitative guarantee based on Bayesian network[J]. Computer Communications, 2010, 33: 2132-2144.
  • 4胡学钢,胡春玲.一种基于依赖分析的贝叶斯网络结构学习算法[J].模式识别与人工智能,2006,19(4):445-449. 被引量:10
  • 5COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9: 309-347.
  • 6NIKOLAY B. A Gaussian mixed model for learning discrete Bayesian networks[J]. Statistics and Probability Letters, 2011, 81: 220-230.
  • 7TUOMAS E, LASSE L, KAMARAINEN J K, et al. Bayesian network model of overall print quality: construction and structural optimization[J]. Pattern Recognition Letters, 2011, 32: 1558-1566.
  • 8ZHU Y G, LIU D Y, JIA H Y. A new evolutionary computation based approach for learning Bayesian network [J]. Procedia Engineering. 2011, 5: 4026-4030.
  • 9XU P F, GUO J H, TANG M L. Structural learning for Bayesian networks by testing complete separators in prime blocks[J]. Computational Statistics and Data Analysis, 2011, 55: 3135-3147.
  • 10JI J Z, HU R B, ZHANG H X, et al. A hybrid method for learning Bayesian networks based on ant colony optimization[J]. Applied Soft Computing, 2011, 11: 3373-3384.

二级参考文献12

  • 1Chickering D M, Herkerman D, Meek C. Large-Sample Learning of Bayesian Networks is NP-Hard. Journal of Machine Learning Research, 2004, 5 : 1287-1330
  • 2Cooper G F, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning,1992, 9(4): 309-347
  • 3Cheng J, Greiner R, Kelly J. Learning Bayesian Networks from Data: An Efficient Information- Theory Based Approach. Artificial Intelligence, 2002, 137( 1 --2) : 43--90
  • 4Verma T, Pearl J. An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation. In: Dubois D,Wellman M P, et al, eds. Proc of the 8th Conference on Uncertainty in Artificial Intelligence. Stanford, USA: Morgan Kaufmann, 1992, 323--330
  • 5Sprites P, Glymour C, Scheines R. Causality from Probability.In: Mckee G, ed. Evolving Knowledge in Natural and Artificial Intelligence. London, UK:Pitman, 1990,181-- 199
  • 6SpritesP, GlymourC, ScheinesR. An Algorithm for Fast Recovery of Sparse Causal Graphs. Social Science Computer Review,1991, 9(1): 62--72
  • 7Peng H C, Ding C. Structure Search and Stability Enhancement of Bayesian Networks. In: Proc of the 3rd IEEE International Conference on Data Mining. Melbourne, USA, 2003, 621--624
  • 8姚宏亮 王浩 胡学钢 汪荣贵.基于遗传算法和MDL原则的贝叶斯网络结构优化算法[J].南京大学学报:自然科学版,2002,38(2):23-27.
  • 9Pearl J. Probabilistic Reasoning in Intelligente Systems: Networks of Plausible Inference. San Mateo, USA: Morgan Kaufmann, 1988
  • 10Wong M L, Leung K S. An Efficient Data Mining Method for Learning Bayesian Networks Using an Evolutionary Algorithm-Based Hybrid Approach. IEEE Trans on Evolutionary Computation, 2004, 8(4): 378-404

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部