期刊文献+

基于激活强度分析的fMRI图像区域性特征研究

Characterization of the Regional fMRI Pattern Based on the Maximum Activation Intensity
下载PDF
导出
摘要 基于ROI方法研究视皮层的兴奋模式,并提取志愿者的共同特征。结合生理结构与Talairach坐标系,对每位志愿者的三维皮层模型进行相同标准的ROI划分,将ROIs投射到保留拓扑关系的二维皮层模型,并提取每个ROI中比例最大的激活强度值来表征激活特征。提取志愿者各个ROI的共同激活特征,以此研究具有共同特征的视皮层兴奋模式。实验结果表明,该方法可提取志愿者的共同激活特征,克服了传统体素分析方法的局限性,为提取具有共同特征的视皮层兴奋模式建立了一种方法。 The activity pattern in human visual cortex is studied and the common feature of volunteers is extracted based on analysis of regions of interest(ROI).By combining physiological structure and Talairach coordinates system,the same ROIs are obtained from the three-dimensional cortical model of each volunteer,these ROIs is then projected into the two-dimensional cortical model with the same topology,and the maximum activation intensity of each ROI is extracted.The common activation feature of volunteers is drawn and described via statistical analysis of ROIs.Experiment results show that the proposed method overcomes the limitation of traditional voxel-based analysis in extracting the common activation feature of volunteers.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第3期477-480,共4页 Journal of University of Electronic Science and Technology of China
基金 国家863项目(2007AA04Z324) 国家科技支撑计划(2011BAI14B04) 国家自然科学基金(31070882)
关键词 激活强度 兴奋模式 磁共振成像 感兴趣区 activation intensity activity pattern magnetic resonance imaging region of interest
  • 相关文献

参考文献12

  • 1WARREND J, FERNADEZ E, NORMANN A, et al. High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array[J]. Neuroscience, 2001, 105(1): 19-31.
  • 2AURLIEN H, GJERDE I O, AAR SETH J H, et al. EEG background activity described by a large computerized database[J]. Clinical Neurophysiology, 2004, 115(3): 665- 673.
  • 3HANSEN K A, DAVID S V, GALLANT J L. Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response[J]. Neuroimage, 2004, 23(1): 233-241.
  • 4SERENO M 1, HAWKEN M J, SHAPLEY R. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging[J]. Science, 1995, 268: 889- 893.
  • 5KAY K N, NASELARIS T, PRENGER R J, et al. Identifying natural images fi'om human brain activity[J]. Nature, 2008, 452: 352-356.
  • 6KRAFT A, SCHIRA M M, HAGENDORG H, et al. fMRI localizer technique: EtIicient acquisition and functional properties of single retinotopic positions in the human visual cortex[J]. Neurolmage, 2005, 28(2): 453-463.
  • 7DAVID D, ROBERT L S. Functional magnetic resonance imaging (flvlR1) "brain reading": detecting and classifying distributed patterns of tMR1 activity in human visual cortex[J]. Neuroimage, 2003, 19(2): 261-270.
  • 8黎元,张俊海,冯晓源,汤伟军,刘含秋.脑功能性磁共振成像的生理学基础[J].中国医学计算机成像杂志,2004,10(5):308-313. 被引量:2
  • 9KAMITANI Y, TONG F. Decoding the visual and subjective contents of the human brain[J]. Nature Neuroscienee, 2005, 8: 679-685.
  • 10NORMAN K A, POLYN S M, DETRE G J, et al. Beyond mind-reading: multi-voxel pattern analysis of fMRI data[J]. Trends in Cognitive Sciences, 2006, 10(9): 424-430.

二级参考文献22

  • 1Baron JC, Lebrun - Grandie P, Collard P, et al. Noninvasive measurement of blood flow, oxygen consumption, and glucose utilization in the same brain regions in man by positron emission tomography. Concise Communication 1982; 23:391 ~ 399
  • 2Yang TT, Gallen CC, Schwartz BJ, et al. Noninvasive somatosensory homunculus mapping in humans by using large - array biomagnetometer. Proc Natl Acad Sci USA 1993; 90: 3098-3102
  • 3Gobel U, Theilen H, Kuschinsky W. Congruence of total and perfused capillary network in rat brain. Circ Res 1990; 66: 271- 281
  • 4Villringer A, Them A, Lindauer U, et al. Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circ Res 1994; 75:55 - 62
  • 5Malonek D, Grinvald A. Interactions between electrical activity and cortical mictocirculation revealed by imaging spectroscopy:implications for functional brain mapping. Science 1996; 272:551 - 554
  • 6Luknowsky DC, Thomas CG, Gatley SJ, et al. Millisecond sequencing of neural activation in simple task determined by the BOLD fMRI neurovascular response. Neuroimage 1998; 7: 280-289
  • 7Shockley RP, LaManna JC. Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hyerventilation. Brain Res 1988; 454:170 - 178
  • 8Gross PM, Sposito NM, Pwttersen SE, et al. Topography of capillary density, glucose metabolism, and microvascular function within the rat inferior colliculus.J Cereb Blood Flow Metab 1987;7:154 - 160
  • 9Kennedy C, Des RM, Sakurada O, et al. Metabolic mapping of the primary visual system of the monkey by means of the autoradiographec[14C] deoxyglucose technique. Proc Natl Acad Sci USA 1976; 73:4230 - 4234
  • 10Fox PT, Raichle ME, Mintun MA, et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988; 241: 462 - 464

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部